期刊文献+
共找到565,426篇文章
< 1 2 250 >
每页显示 20 50 100
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors 被引量:1
1
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
2
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption
3
作者 Jintang Zhou Kexin Zou +11 位作者 Jiaqi Tao Jun Liu Yijie Liu Lvtong Duan Zhenyu Cheng Borui Zha Zhengjun Yao Guiyu Peng Xuewei Tao Hexia Huang Yao Ma Peijiang Liu 《Journal of Materials Science & Technology》 2025年第12期36-44,共9页
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin... Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field. 展开更多
关键词 MOFS multi-scale regulation Yolk-shell structure Amorphous carbon Oxygen vacancy Microwave absorption
原文传递
Mechanical properties and deformation behavior of Mg-Al-Zn alloy laminate with multi-scale heterostructures
4
作者 Shuaishuai Liu Xiang Chen +7 位作者 Tianjiao Li Wenhuan Chen Liping Zhong Yongjian Wang Manoj Gupta Guangsheng Huang Bin Jiang Fusheng Pan 《Journal of Materials Science & Technology》 2025年第31期134-150,共17页
Heterostructured materials as a new class can effectively avoid the inverted relationship of the“banana”curve followed by strength-ductility.The difference in grain size is the mainstream idea of the design of heter... Heterostructured materials as a new class can effectively avoid the inverted relationship of the“banana”curve followed by strength-ductility.The difference in grain size is the mainstream idea of the design of heterogeneous zones.However,the synergistic strengthening mechanism and deformation behavior among multi-scale heterostructures are still unclear.In this work,AZ80/AZ31 laminate with a multi-scale heterogeneous distribution of grain size,precipitates,and texture between alternate AZ31 and AZ80 component layers,which was constructed by accumulative extrusion bonding combined with aging treatment.The composite samples after 2-pass extrusion presented an outstanding strength-ductility synergy,which was attributed to the joint action of texture softening and hardening,grain refinement as well as multistage heterogeneous deformation induced(HDI)strengthening and hardening.Multi-types of heterogeneous regions provided more sites for geometrically necessary dislocation accumulation to accommodate multiple strain gradients under the constraint of multi-layer interfaces,enhancing HDI stress.The synergistic effect of great Schmid factor difference and increasing geometric compatibility factor between adjacent grains at the layer interface led to strain transfer behavior,which facilitated strain delocalization.This work expands the design ideas and preparation methods of heterostructured materials and enriches the theory of heterogeneous deformation. 展开更多
关键词 AZ alloys multi-scale heterostructures Mechanical properties HDI stress Micro strain
原文传递
Multi-scaled heterostructure enables superior strength-ductility combination of a CoCrFeMnN compositionally-complex alloy
5
作者 Haizheng Pan Ye Yuan +5 位作者 Yuliang Yang Zhufeng He Shuang Jiang Mingwei Zhu Weiye Chen Nan Jia 《Journal of Materials Science & Technology》 2025年第19期82-93,共12页
Compositionally-complex alloys(CCAs)with the face-centered cubic(fcc)structure exhibit excellent frac-ture toughness and stable mechanical property across a broad temperature range from cryogenic to room temperatures.... Compositionally-complex alloys(CCAs)with the face-centered cubic(fcc)structure exhibit excellent frac-ture toughness and stable mechanical property across a broad temperature range from cryogenic to room temperatures.However,yield strength of those alloys is usually low,making them difficult to meet the demands of practical engineering application.In a prototype CCA with the nominal chemical composition of Co10Cr10Fe49Mn30N1(atom percent),a multi-scaled heterostructure from sample to atomic scales was obtained by performing triaxial cyclic compression and short-term annealing on the blocky alloy.The ma-terial exhibits a heterogeneous distribution of strain at the sample scale.At the grain scale,dense twins and twin-twin network,laths featured with local chemical order as well as dislocation cells jointly hinder plastic deformation.At the nanoscale,the chemical order within grains also impedes dislocation motion.During plastic deformation,different sample positions within the heterogeneous material and various regions at each position undergo coordinated deformation,resulting in significant hetero-deformation in-duced strengthening.Simultaneously,the continuously activated dislocations,stacking faults and nano-twins lead to a high yield strength of 1020 MPa in the material while maintaining a fracture elongation of 30%.This study provides new insights for the design and development of high-performance metallic materials. 展开更多
关键词 Compositionally-complex alloy Heterogeneous structure Twin STRENGTH
原文传递
Biomimetic Engineering High-Sensitivity Flexible Pressure Sensors with Ultra-Wide Pressure Detection Range via Synergistic Interlocked Structures and Multi-scale Micro-dome Interfaces
6
作者 Junqiu Zhang Jiachao Wu +16 位作者 Lili Liu Tao Sun Xiangbo Gu Zijian Shi Xueyang Li Xueping Zhang Yu Chen Jiqi Gao Kejun Wang Bin Zhu Wenze Sun Yutao Mei Yubo Yan Yan Li Zhijing Wu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第5期2550-2560,共11页
Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigi... Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range. 展开更多
关键词 Biomimetic engineering Flexible pressure sensors Ultrahigh sensitivity and wide-range detection Multiscale interface Interlocked structure
在线阅读 下载PDF
Enhanced permeability mechanism in coal seams through liquid nitrogen immersion:multi-scale pore structure analysis
7
作者 LI Xue-long CHEN De-you +5 位作者 LIU Shu-min WANG Deng-ke SUN Hai-tao YIN Da-wei ZHANG Yong-gang GONG Bin 《Journal of Central South University》 2025年第7期2732-2749,共18页
The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for e... The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for efficient extraction.This study systematically investigates the impact of liquid nitrogen immersion(LNI)on the coal’s pore structure and its mechanism of enhancing permeability with a combination of quantitative nuclear magnetic resonance(NMR)analysis,nitrogen adsorption experiments,and fractal dimension calculations.The results demonstrate that LNI can damage the coal’s pore structure and promote fracture expansion through thermal stress induction and moisture phase transformation,thereby enhancing the permeability of coal seams.The T_(2)peak area in the NMR experiments on coal samples subjected to LNI treatment shows a significant increase,the Brunauer-Emmett-Teller(BET)specific surface area decreases to 6.02 m^(2)/g,and the Barrett-Joyner-Halenda(BJH)total pore volume increases to 14.99 mm^(3)/g.Furthermore,changes in fractal dimensions(D_(1)rising from 2.804 to 2.837,and D_(2)falling from 2.757 to 2.594)indicate a notable enhancement in the complexity of the pore structure.With increasing LNI cycles,the adsorption capacity of the coal samples diminishes,suggesting a significant optimization of the pore structure.This optimization is particularly evident in the reconstruction of the micropore structure,which in turn greatly enhances the complexity and connectivity of the sample’s pore network.In summary,the study concludes that LNI technology can effectively improve the permeability of coal seams and the extraction efficiency of coalbed methane by optimizing the micropore structure and enhancing pore connectivity,which offers a potential method for enhancing the permeability of gas-bearing coal seams and facilitating the development and utilization of coalbed methane. 展开更多
关键词 liquid nitrogen immersion(LNI) coal seam pore structure PERMEABILITY nuclear magnetic resonance(NMR) fractal dimension
在线阅读 下载PDF
Effect of Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentation on the multi-scale structure and physicochemical properties 被引量:4
8
作者 Xiaoqing Xie Min zheng +5 位作者 Yanan Bai Ziqi Zhang Min Zhang Zhifei Chen Xinzhong Hu Juxiu Li 《Food Bioscience》 SCIE 2023年第2期783-790,共8页
Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plant... Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae could whether affect the multi-scale structure and physicochemical properties of highland barley starch(HBS).The results of multi-scale structure determination of HBS showed that compared with unfermented HBS(32.27%),fermentation showed a significant increase in relative crystallinity(35.49-39.81%),while the crystal type of HBS as observed from X-ray diffraction(A-type crystalline pattern)did not change.The small angle X-ray scattering revealed that fermentation reduced the amorphous region and increased the crystalline layer thickness of the HBS.Consequently,the changes in the physicochemical properties showed that the peak viscosity,trough viscosity,and final viscosity of HBS were reduced after fermentation,and the aging of starch gel was delayed significantly.Our results showed that Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentations improve the physicochemical properties of HBS by modifying the multi-scale structure of starch,especially the synergistic fermentation effect was more effective. 展开更多
关键词 FERMENTATION Highland barley starch multi-scale structure Physicochemical properties
原文传递
MULTI-SCALE STRUCTURES IN EMULSION AND MICROSPHERE COMPLEX SYSTEMS 被引量:1
9
作者 Guanghui Ma Fangling Gong +3 位作者 Guohua Hu Dongxia Ha Rong Liu Renwei Wang 《China Particuology》 SCIE EI CAS CSCD 2005年第6期296-303,共8页
Multi-scale structures involved in emulsion and microsphere complex systems are presented and discussed. The stability and spatio-temporal structures of emulsions, as well as nano-structures formed on the surface of m... Multi-scale structures involved in emulsion and microsphere complex systems are presented and discussed. The stability and spatio-temporal structures of emulsions, as well as nano-structures formed on the surface of microspheres after polymerization, are affected by the molecular emulsifier/stabilizer structures and the adsorbed emulsifier/stabilizer nano-structures on the oil/water interface. The broad size distribution and variation of surface features of droplets are responsible for variations of the adsorbed emulsifier/stabilizer structures and the stability of the emulsions. On the other hand, preparation of a uniformly sized emulsion and employment of a combined emulsifier/stabilizer system can preserve the stability of the emulsions and microspheres. The above phenomena should be modeled by a multiscale method, in order to maintain the stability of individual emulsion systems and realize the desired nano-structures of microspheres by choosing adequate emulsifier/stabilizer and experimental parameters. 展开更多
关键词 multi-scale structure spatio-temporal structure EMULSION MICROSPHERE emulsifier/stabilizer nano-structure
在线阅读 下载PDF
Multi-scale structure engineering of covalent organic framework for electrochemical charge storage 被引量:1
10
作者 Xiaofang Zhang Fangling Li +4 位作者 Shuangqiao Yang Baiqi Song Richu Luo Rui Xiong Weilin Xu 《SusMat》 SCIE EI 2024年第1期4-33,共30页
Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable... Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture,pre-designable periodic skeleton,well-defined micro-/meso-pore,large specific surface area,and customizable electroactive functionality.Those benefits make COFs as promising candidates for advanced electrochemical energy storage.Especially,for now,structure engineering of COFs from multiscale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability,electrical conductivity,redox activity,and charge storage.In this review,we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs,started with introducing their basic chemistries and charge storage principles.The careful discussion on the significant achievements in structure engineering of COFs from linkages,redox sites,polygon skeleton,crystal nanostructures,and composite microstructures,and further their effects on the electrochemical behavior of COFs are presented.Finally,the timely cutting-edge perspectives and in-depth insights into COFbased electrodematerials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed. 展开更多
关键词 covalent organic frameworks electrochemical energy storage multi-scale structure engineering structure-performance correlation
原文传递
Crystal structure,thermal analysis,and luminescence properties of six heterocyclic lanthanide complexes
11
作者 SONG Zihe ZHAO Jinjin +1 位作者 REN Ning ZHANG Jianjun 《无机化学学报》 北大核心 2026年第1期181-192,共12页
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'... Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6. 展开更多
关键词 lanthanide complexes fluorescence property crystal structure thermal analysis
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
12
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
Effects of SiO_(2)/Al_(2)O_(3)Ratios on Microstructure,Properties and Elastic Modulus of SiO_(2)-Al_(2)O_(3)-CaO-MgO Alkali-Free Glass
13
作者 DONG Peng TENG Zhou +3 位作者 XIE Jun ZHANG Jihong XIONG Dehua CHEN Dequan 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期45-53,共9页
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes... Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass. 展开更多
关键词 alkali free glass glass network structure VISCOSITY elastic modulus
原文传递
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
14
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
15
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting Electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Short-term silicone oil tamponade on retinal structure and function in rhegmatogenous retinal detachment:a randomized controlled trial
16
作者 Zi-Ye Chen Yu-Qing Wu +7 位作者 Bao-Yi Liu Yuan Ma Zhuang-Ling Lin Run-Ping Duan Lan Jiang Chinling Tsai Zhuo-Jun Xu Tao Li 《International Journal of Ophthalmology(English edition)》 2026年第1期83-89,共7页
AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal de... AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal detachment(RRD).METHODS:A total of 58 eligible patients were enrolled and randomly assigned to two groups based on tamponade duration:the short-term group(30-45d)and the conventional group(≥90d).Comprehensive evaluations were performed before and after SOR,including slitlamp examination,best-corrected visual acuity(BCVA)measurement,intraocular pressure(IOP)testing,optical coherence tomography(OCT),optical coherence tomography angiography(OCTA),microperimetry,electroretinography(ERG),and visual evoked potential(VEP)assessment.RESULTS:A total of 33 patients(23 males and 10 females;33 eyes)were enrolled in the short-term SO tamponade group with mean age of 52.45±9.35y,and 25 patients(15 males and 10 females;25 eyes)were enrolled in the conventional SO tamponade group with mean age of 50.80±12.06y.Compared with the conventional group,the short-term silicone oil tamponade group had a significantly lower incidence of silicone oil emulsification and cataract progression,with no significant difference in retinal reattachment success rate.Structurally,short-term tamponade was associated with increased thickness of the retinal ganglion cell layer(RGCL)in the nasal and superior macular regions and improved recovery of superficial retinal vascular density in these areas.Functionally,the shortterm group showed better BCVA and retinal sensitivity both before and 1mo after SOR;additionally,the P100 amplitude in VEP tests was significantly increased in this group.CONCLUSION:Shortening the duration of silicone oil tamponade effectively reduces damage to retinal structure and function without compromising the success rate of retinal reattachment in patients with primary RRD. 展开更多
关键词 silicone oil tamponade rhegmatogenous retinal detachment silicone oil removal retinal structure retinal function PROGNOSIS
原文传递
Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components 被引量:26
17
作者 Chuang WANG Jihong ZHU +5 位作者 Manqiao WU Jie HOU Han ZHOU Lu MENG Chenyang LI Weihong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期386-398,共13页
By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as red... By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs. 展开更多
关键词 Aerospace vehicle components Lattice-based optimization multi-scale Solid-lattice hybrid structure Topology optimization
原文传递
In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries 被引量:1
18
作者 Guyue Li Zhenguo Yao Chilin Li 《Journal of Energy Chemistry》 2025年第6期44-53,I0002,共11页
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me... Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs. 展开更多
关键词 Vanadium pentoxide cathode Electrolyte additive Solvation structure Interface manipulation Magnesium metal batteries
在线阅读 下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
19
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure multi-scale optimization Topology optimization Fiber winding angle structural compliance
在线阅读 下载PDF
MULTI-SCALE FE COMPUTATION FOR THE STRUCTURES OF COMPOSITE MATERIALS WITH SMALL PERIODIC CONFIGURATION UNDER CONDITION OF COUPLED THERMOELASTICITY 被引量:11
20
作者 冯永平 崔俊芝 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期54-63,共10页
In this paper,the multi-scale computational method for a structure of composite materials with a small periodic configuration under the coupled thermoelasticity condition is presented. The two-scale asymptotic(TSA)exp... In this paper,the multi-scale computational method for a structure of composite materials with a small periodic configuration under the coupled thermoelasticity condition is presented. The two-scale asymptotic(TSA)expression of the displacement and the increment of temperature for composite materials with a small periodic configuration under the condition of thermoelasticity are briefly shown at first,then the multi-scale finite element algorithms based on TSA are discussed.Finally the numerical results evaluated by the multi-scale computational method are shown.It demonstrates that the basic configuration and the increment of temperature strongly influence the local strains and local stresses inside a basic cell. 展开更多
关键词 two-scale method THERMOELASTICITY periodic structure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部