期刊文献+
共找到1,507篇文章
< 1 2 76 >
每页显示 20 50 100
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
1
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
2
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
3
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
4
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
5
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
6
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
LSD-DETR:a Lightweight Real-Time Detection Transformer for SAR Ship Detection
7
作者 GAO Gui LINGHU Wenya 《Journal of Geodesy and Geoinformation Science》 2025年第1期47-70,共24页
Recently,there has been a widespread application of deep learning in object detection with Synthetic Aperture Radar(SAR).The current algorithms based on Convolutional Neural Networks(CNN)often achieve good accuracy at... Recently,there has been a widespread application of deep learning in object detection with Synthetic Aperture Radar(SAR).The current algorithms based on Convolutional Neural Networks(CNN)often achieve good accuracy at the expense of more complex model structures and huge parameters,which poses a great challenge for real-time and accurate detection of multi-scale targets.To address these problems,we propose a lightweight real-time SAR ship object detector based on detection transformer(LSD-DETR)in this study.First,a lightweight backbone network LCNet containing a stem module and inverted residual structure is constructed to balance the inference speed and detection accuracy of model.Second,we design a transformer encoder with Cascaded Group Attention(CGA Encoder)to enrich the feature information of small targets in SAR images,which makes detection of small-sized ships more precise.Third,an efficient cross-scale feature fusion pyramid module(C3Het-FPN)is proposed through the lightweight units(C3Het)and the introduction of the weighted bidirectional feature pyramid(BiFPN)structure,which realizes the adaptive fusion of multi-scale features with fewer parameters.Ablation experiments and comparative experiments demonstrate the effectiveness of LSD-DETR.The model parameter of LSD-DETR is 8.8 M(only 20.6%of DETR),the model’s FPS reached 43.1,the average detection accuracy mAP50 on the SSDD and HRSID datasets reached 97.3%and 93.4%.Compared to advanced methods,the LSD-DETR can attain superior precision with fewer parameters,which enables accurate real-time object detection of multi-scale ships in SAR images. 展开更多
关键词 detection transformer Synthetic Aperture Radar(SAR) LIGHTWEIGHT multi-scale ship detection deep learning
在线阅读 下载PDF
Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention
8
作者 Huagang Jin Yu Zhou 《Computers, Materials & Continua》 2025年第10期751-768,共18页
Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varyin... Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales,slightly occluded objects,uneven illumination,and sea clutter.To address these issues,we propose a novel ship detection approach,i.e.,the Twin Feature Pyramid Network and Data Augmentation(TFPN-DA),which mainly consists of three modules.First,to eliminate the negative effects of slightly occluded objects and uneven illumination,we propose the Spatial Attention within the Twin Feature Pyramid Network(SA-TFPN)method,which is based on spatial attention to reconstruct the feature pyramid.Second,the ROI Feature Module(ROIFM)is introduced into the SA-TFPN,which is used to enhance specific crucial details from multi-scale features for object regression and classification.Additionally,data augmentation strategies such as spatial affine transformation and noise processing,are developed to optimize the data sample distribution.A self-construct dataset is used to train the detection model,and the experiments conducted on the dataset demonstrate the effectiveness of our model. 展开更多
关键词 Marine ship detection deep learning FPN faster-RCNN spatial attention data augmentation
在线阅读 下载PDF
Global Context Fusion Network for SAR Ship Detection
9
作者 Boya Zhang Yong Wang 《Journal of Beijing Institute of Technology》 2025年第6期577-589,共13页
Ship detection in synthetic aperture radar(SAR)image is crucial for marine surveillance and navigation.The application of detection network based on deep learning has achieved a promising result in SAR ship detection.... Ship detection in synthetic aperture radar(SAR)image is crucial for marine surveillance and navigation.The application of detection network based on deep learning has achieved a promising result in SAR ship detection.However,the existing networks encounters challenges due to the complex backgrounds,diverse scales and irregular distribution of ship targets.To address these issues,this article proposes a detection algorithm that integrates global context of the images(GCF-Net).First,we construct a global feature extraction module in the backbone network of GCF-Net,which encodes features along different spatial directions.Then,we incorporate bi-directional feature pyramid network(BiFPN)in the neck network to fuse the multi-scale features selectively.Finally,we design a convolution and transformer mixed(CTM)detection head to obtain contextual information of targets and concentrate network attention on the most informative regions of the images.Experimental results demonstrate that the proposed method achieves more accurate detection of ship targets in SAR images. 展开更多
关键词 synthetic aperture radar(SAR) ship detection global context fusion convolutional neural network feature extraction
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
10
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Image Tamper Detection and Multi-Scale Self-Recovery Using Reference Embedding with Multi-Rate Data Protection 被引量:1
11
作者 Navid Daneshmandpour Habibollah Danyali Mohammad Sadegh Helfroush 《China Communications》 SCIE CSCD 2019年第11期154-166,共13页
This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult... This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods. 展开更多
关键词 TAMPER detection image recovery multi-scale SELF-RECOVERY tolerable tampering rate
在线阅读 下载PDF
A MULTI-SCALE MORPHOLOGICAL APPROACH TO SAR IMAGE EDGE DETECTION 被引量:1
12
作者 Tang Zhengjun Song Jianshe (Section of Information Engineering, Xi’an Hi-technology Research Institute, Xi’an 710025) 《Journal of Electronics(China)》 2000年第3期208-212,共5页
This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the a... This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance. 展开更多
关键词 MATHEMATICAL MORPHOLOGY multi-scale analysis Edge detection Performance evaluation
在线阅读 下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
13
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 multi-scale attention mechanism dynamic detection head
在线阅读 下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
14
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
在线阅读 下载PDF
Multivariate Image Analysis in Gaussian Multi-Scale Space for Defect Detection
15
作者 Dong-tai Liang~1 Wei-yan Deng~2 Xuan-yin Wang~1 Yang Zhang~11.State Key Laboratory of Fluid Power Transmission and Control Zhejiang University,Hangzhou 310027,P.R.China2.College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期298-305,共8页
Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale ... Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of the Gaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi- variate image,in which each channel could represent a perceptual observation of the original image from different scales.The Multivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined Principal Component Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image, derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently reveal the surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposed method performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,and has more robustness and reliability of defect detection with lower pseudo reject rate. 展开更多
关键词 defect detection SCALE-SPACE Gausslan multi-scale representahon principal component analysis multivariate image anaIysis
在线阅读 下载PDF
Contour Detection Algorithm forαPhase Structure of TB6 Titanium Alloy fused with Multi-Scale Fretting Features
16
作者 Fei He Yan Dou +1 位作者 Xiaoying Zhang Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期499-509,共11页
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate... Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy. 展开更多
关键词 TB6 titanium alloyαphase multi-scale fretting features Contour detection
在线阅读 下载PDF
Fast Face Detection with Multi-Scale Window Search Free from Image Resizing Using SGI Features
17
作者 Masayuki Miyama 《Journal of Computer and Communications》 2016年第10期22-29,共9页
Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. Th... Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation. 展开更多
关键词 Face detection multi-scale Window Search Resizing Free SGI Feature
在线阅读 下载PDF
Ash Detection of Coal Slime Flotation Tailings Based on Chromatographic Filter Paper Sampling and Multi-Scale Residual Network
18
作者 Wenbo Zhu Neng Liu +4 位作者 Zhengjun Zhu Haibing Li Weijie Fu Zhongbo Zhang Xinghao Zhang 《Intelligent Automation & Soft Computing》 2023年第12期259-273,共15页
The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings ima... The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings. 展开更多
关键词 Coal slime flotation ash detection chromatography filter paper multi-scale residual network
在线阅读 下载PDF
Ship detection and classification from optical remote sensing images: A survey 被引量:15
19
作者 Bo LI Xiaoyang XIE +1 位作者 Xingxing WEI Wenting TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期145-163,共19页
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f... Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images. 展开更多
关键词 Optical remote sensing Satellite image Sea target detection ship classification ship detection
原文传递
Lira-YOLO: a lightweight model for ship detection in radar images 被引量:15
20
作者 ZHOU Long WEI Suyuan +3 位作者 CUI Zhongma FANG Jiaqi YANG Xiaoting DING Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期950-956,共7页
For the detection of marine ship objects in radar images, large-scale networks based on deep learning are difficult to be deployed on existing radar-equipped devices. This paper proposes a lightweight convolutional ne... For the detection of marine ship objects in radar images, large-scale networks based on deep learning are difficult to be deployed on existing radar-equipped devices. This paper proposes a lightweight convolutional neural network, LiraNet, which combines the idea of dense connections, residual connections and group convolution, including stem blocks and extractor modules.The designed stem block uses a series of small convolutions to extract the input image features, and the extractor network adopts the designed two-way dense connection module, which further reduces the network operation complexity. Mounting LiraNet on the object detection framework Darknet, this paper proposes Lira-you only look once(Lira-YOLO), a lightweight model for ship detection in radar images, which can easily be deployed on the mobile devices. Lira-YOLO's prediction module uses a two-layer YOLO prediction layer and adds a residual module for better feature delivery. At the same time, in order to fully verify the performance of the model, mini-RD, a lightweight distance Doppler domain radar images dataset, is constructed. Experiments show that the network complexity of Lira-YOLO is low, being only 2.980 Bflops, and the parameter quantity is smaller, which is only 4.3 MB. The mean average precision(mAP) indicators on the mini-RD and SAR ship detection dataset(SSDD) reach 83.21% and 85.46%, respectively,which is comparable to the tiny-YOLOv3. Lira-YOLO has achieved a good detection accuracy with less memory and computational cost. 展开更多
关键词 LIGHTWEIGHT radar images ship detection you only look once(YOLO)
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部