Segmenting skin lesions is critical for early skin cancer detection.Existing CNN and Transformer-based methods face challenges such as high computational complexity and limited adaptability to variations in lesion siz...Segmenting skin lesions is critical for early skin cancer detection.Existing CNN and Transformer-based methods face challenges such as high computational complexity and limited adaptability to variations in lesion sizes.To overcome these limitations,we introduce MSAMamba-UNet,a lightweight model that integrates two novel architectures:Multi-Scale Mamba(MSMamba)and Adaptive Dynamic Gating Block(ADGB).MSMamba utilizes multi-scale decomposition and a parallel hierarchical structure to enhance the delineation of irregular lesion boundaries and sensitivity to small targets.ADGB dynamically selects convolutional kernels with varying receptive fields based on input features,improving the model’s capacity to accommodate diverse lesion textures and scales.Additionally,we introduce a Mix Attention Fusion Block(MAF)to enhance shallow feature representation by integrating parallel channel and pixel attention mechanisms.Extensive evaluation of MSAMamba-UNet on the ISIC 2016,ISIC 2017,and ISIC 2018 datasets demonstrates competitive segmentation accuracy with only 0.056 M parameters and 0.069 GFLOPs.Our experiments revealed that MSAMamba-UNet achieved IoU scores of 85.53%,85.47%,and 82.22%,as well as DSC scores of 92.20%,92.17%,and 90.24%,respectively.These results underscore the lightweight design and effectiveness of MSAMamba-UNet.展开更多
Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector fl...Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62201201the Foundation of Henan Educational Committee under Grant 242102211042.
文摘Segmenting skin lesions is critical for early skin cancer detection.Existing CNN and Transformer-based methods face challenges such as high computational complexity and limited adaptability to variations in lesion sizes.To overcome these limitations,we introduce MSAMamba-UNet,a lightweight model that integrates two novel architectures:Multi-Scale Mamba(MSMamba)and Adaptive Dynamic Gating Block(ADGB).MSMamba utilizes multi-scale decomposition and a parallel hierarchical structure to enhance the delineation of irregular lesion boundaries and sensitivity to small targets.ADGB dynamically selects convolutional kernels with varying receptive fields based on input features,improving the model’s capacity to accommodate diverse lesion textures and scales.Additionally,we introduce a Mix Attention Fusion Block(MAF)to enhance shallow feature representation by integrating parallel channel and pixel attention mechanisms.Extensive evaluation of MSAMamba-UNet on the ISIC 2016,ISIC 2017,and ISIC 2018 datasets demonstrates competitive segmentation accuracy with only 0.056 M parameters and 0.069 GFLOPs.Our experiments revealed that MSAMamba-UNet achieved IoU scores of 85.53%,85.47%,and 82.22%,as well as DSC scores of 92.20%,92.17%,and 90.24%,respectively.These results underscore the lightweight design and effectiveness of MSAMamba-UNet.
文摘Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.