Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de...Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.展开更多
An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of...An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the REPS's skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A "multi-scale blending" (MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows higher skill than the original system, as determined by ensemble forecast verification.展开更多
The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effecti...The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effective forest resource management.Based on multi-source data including forest distribution,topography,NDVI,meteorology and soil conditions,key forest ecosystem services,including total forest volume,carbon storage,water yield,soil retention and habitat quality were mapped and evaluated for the Funiu Mountain Region through integrated deployment of the CASA model,the InVEST3.2 model and the ArcGIS10.2 software.The characteristics of trade-offs and synergies among different ecosystem services were then mapped and considered across multiple spatial scales(i.e.,by region,north and south slopes,vertical belt)using the spatial overlay analysis method.The main results are as follows:(1)Mean forest volume is 49.26 m^(3)/ha,carbon density is 156.94 t/ha,water yield depth is 494.46 mm,the unit amount of soil retention is 955.4 t/ha,and the habitat quality index is 0.79.(2)The area of forests with good synergy is 28.79%,and the area of forests with poor synergy is 10.15%,while about 61.06%of forests show severe trade-offs and weak trade-offs.The overall benefits of forest ecosystem services in the study area are still low.In the future,bad synergy and severe trade-off areas should be the focus of forest resource management and efficiency regulation.(3)Synergy between ecosystem services is better for forest on south slope than that on north slope.Deciduous broad-leaved forest belt at moderate elevations on south slope in the mountains(SIII)has the highest synergies,while that at low elevations on north slope(NI)exhibits the lowest synergy levels.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
Rapid economic development and human activities have severely affected ecosystem function.Analysis of the spatial distribution of areas of rapid urbanization is the basis for optimizing urban-ecological spatial design...Rapid economic development and human activities have severely affected ecosystem function.Analysis of the spatial distribution of areas of rapid urbanization is the basis for optimizing urban-ecological spatial design.This paper evaluated the spatial distribution of urbanization in the Beijing-Tianjin-Hebei(BTH)region,and then quantified the ecosystem services(ES)budget in the region based on an ES supply and demand matrix.The results showed that(1)urbanization patterns in the BTH region were relatively stable from 2000 to 2015,with clear patterns of low levels of urbanization in the northwest and high levels in the southeast;(2)areas with positive ES budget values were found throughout the region,except in built-up areas,with high ES supply areas concentrated in the northwest,and high ES demand areas in the southeast;(3)at both the county and prefecture-city levels,urbanization had negative,positive,and negative correlations with ES supply,demand,and budget,respectively;(4)the coupling coordination degree(CCD)increased,with high CCD values in the southeast.Based on these results,policy recommendations include strengthening rational land-use planning and ecosystem management,promoting the coordinated development of the economy and ecological function,and coordinating the provision of production-life-ecological functions.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc...Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
The Medieval Climate Anomaly(MCA,AD950-1250)is the most recent warm period lasting for several hundred years and is regarded as a reference scenario when studying the impact of and adaptation to global and regional wa...The Medieval Climate Anomaly(MCA,AD950-1250)is the most recent warm period lasting for several hundred years and is regarded as a reference scenario when studying the impact of and adaptation to global and regional warming.In this study,we investigated the characteristics of temperature variations on decadal-centennial scales during the MCA for four regions(Northeast,Northwest,Central-east,and Tibetan Plateau)in China,based on high-resolution temperature reconstructions and related warm-cold records from historical documents.The ensemble empirical mode decomposition method is used to analyze the time series.The results showed that for China as a whole,the longest warm period during the last 2000 years occurred in the 10th-13th centuries,although there were multi-decadal cold intervals in the middle to late 12th century.However,in the beginning and ending decades,warm peaks and phases on the decadal scale of the MCA for different regions were not consistent with each other.On the inter-decadal scale,regional temperature variations were similar from 950 to 1130;moreover,their amplitudes became smaller,and the phases did not agree well from 1130 to 1250.On the multi-decadal to centennial scale,all four regions began to warm in the early 10th century and experienced two cold intervals during the MCA.However,the Northwest and Central-east China were in step with each other while the warm periods in the Northeast China and Tibetan Plateau ended about 40-50 years earlier.On the multi-centennial scale,the mean temperature difference between the MCA and Little Ice Age was significant in Northeast and Central-east China but not in the Northwest China and Tibetan Plateau.Compared to the mean temperature of the 20th century,a comparable warmth in the MCA was found in the Central-east China,but there was a little cooling in Northeast China;meanwhile,there were significantly lower temperatures in Northwest China and Tibetan Plateau.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a co...Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.展开更多
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This...Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.展开更多
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an...Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.展开更多
Heterostructured materials as a new class can effectively avoid the inverted relationship of the“banana”curve followed by strength-ductility.The difference in grain size is the mainstream idea of the design of heter...Heterostructured materials as a new class can effectively avoid the inverted relationship of the“banana”curve followed by strength-ductility.The difference in grain size is the mainstream idea of the design of heterogeneous zones.However,the synergistic strengthening mechanism and deformation behavior among multi-scale heterostructures are still unclear.In this work,AZ80/AZ31 laminate with a multi-scale heterogeneous distribution of grain size,precipitates,and texture between alternate AZ31 and AZ80 component layers,which was constructed by accumulative extrusion bonding combined with aging treatment.The composite samples after 2-pass extrusion presented an outstanding strength-ductility synergy,which was attributed to the joint action of texture softening and hardening,grain refinement as well as multistage heterogeneous deformation induced(HDI)strengthening and hardening.Multi-types of heterogeneous regions provided more sites for geometrically necessary dislocation accumulation to accommodate multiple strain gradients under the constraint of multi-layer interfaces,enhancing HDI stress.The synergistic effect of great Schmid factor difference and increasing geometric compatibility factor between adjacent grains at the layer interface led to strain transfer behavior,which facilitated strain delocalization.This work expands the design ideas and preparation methods of heterostructured materials and enriches the theory of heterogeneous deformation.展开更多
基金Projects(41601424,41171351)supported by the National Natural Science Foundation of ChinaProject(2012CB719906)supported by the National Basic Research Program of China(973 Program)+2 种基金Project(14JJ1007)supported by the Hunan Natural Science Fund for Distinguished Young Scholars,ChinaProject(2017M610486)supported by the China Postdoctoral Science FoundationProjects(2017YFB0503700,2017YFB0503601)supported by the National Key Research and Development Foundation of China
文摘Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.
基金supported by the National Natural Science Foundation of China (Grant No. 91437113)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201506007 and GYHY201006015)+1 种基金the National 973 Program of China (Grant Nos. 2012CB417204 and 2012CB955200)the Scientific Research & Innovation Projects for Academic Degree Students of Ordinary Universities of Jiangsu (Grant No. KYLX 0827)
文摘An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the REPS's skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A "multi-scale blending" (MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows higher skill than the original system, as determined by ensemble forecast verification.
基金National Natural Science Foundation of China,No.41671090National Basic Research Program(973 Program),No.2015CB452702。
文摘The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effective forest resource management.Based on multi-source data including forest distribution,topography,NDVI,meteorology and soil conditions,key forest ecosystem services,including total forest volume,carbon storage,water yield,soil retention and habitat quality were mapped and evaluated for the Funiu Mountain Region through integrated deployment of the CASA model,the InVEST3.2 model and the ArcGIS10.2 software.The characteristics of trade-offs and synergies among different ecosystem services were then mapped and considered across multiple spatial scales(i.e.,by region,north and south slopes,vertical belt)using the spatial overlay analysis method.The main results are as follows:(1)Mean forest volume is 49.26 m^(3)/ha,carbon density is 156.94 t/ha,water yield depth is 494.46 mm,the unit amount of soil retention is 955.4 t/ha,and the habitat quality index is 0.79.(2)The area of forests with good synergy is 28.79%,and the area of forests with poor synergy is 10.15%,while about 61.06%of forests show severe trade-offs and weak trade-offs.The overall benefits of forest ecosystem services in the study area are still low.In the future,bad synergy and severe trade-off areas should be the focus of forest resource management and efficiency regulation.(3)Synergy between ecosystem services is better for forest on south slope than that on north slope.Deciduous broad-leaved forest belt at moderate elevations on south slope in the mountains(SIII)has the highest synergies,while that at low elevations on north slope(NI)exhibits the lowest synergy levels.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
基金National Natural Science Foundation of China,No.72004215。
文摘Rapid economic development and human activities have severely affected ecosystem function.Analysis of the spatial distribution of areas of rapid urbanization is the basis for optimizing urban-ecological spatial design.This paper evaluated the spatial distribution of urbanization in the Beijing-Tianjin-Hebei(BTH)region,and then quantified the ecosystem services(ES)budget in the region based on an ES supply and demand matrix.The results showed that(1)urbanization patterns in the BTH region were relatively stable from 2000 to 2015,with clear patterns of low levels of urbanization in the northwest and high levels in the southeast;(2)areas with positive ES budget values were found throughout the region,except in built-up areas,with high ES supply areas concentrated in the northwest,and high ES demand areas in the southeast;(3)at both the county and prefecture-city levels,urbanization had negative,positive,and negative correlations with ES supply,demand,and budget,respectively;(4)the coupling coordination degree(CCD)increased,with high CCD values in the southeast.Based on these results,policy recommendations include strengthening rational land-use planning and ecosystem management,promoting the coordinated development of the economy and ecological function,and coordinating the provision of production-life-ecological functions.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by the China Postdoctoral Science Foundation Funded Project(No.2021M690385)the National Natural Science Foundation of China(No.62101045).
文摘Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金National Key R&D Program of China,No.2017YFA0603300National Natural Science Foundation of China,No.41671036,No.41831174The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA 19040101。
文摘The Medieval Climate Anomaly(MCA,AD950-1250)is the most recent warm period lasting for several hundred years and is regarded as a reference scenario when studying the impact of and adaptation to global and regional warming.In this study,we investigated the characteristics of temperature variations on decadal-centennial scales during the MCA for four regions(Northeast,Northwest,Central-east,and Tibetan Plateau)in China,based on high-resolution temperature reconstructions and related warm-cold records from historical documents.The ensemble empirical mode decomposition method is used to analyze the time series.The results showed that for China as a whole,the longest warm period during the last 2000 years occurred in the 10th-13th centuries,although there were multi-decadal cold intervals in the middle to late 12th century.However,in the beginning and ending decades,warm peaks and phases on the decadal scale of the MCA for different regions were not consistent with each other.On the inter-decadal scale,regional temperature variations were similar from 950 to 1130;moreover,their amplitudes became smaller,and the phases did not agree well from 1130 to 1250.On the multi-decadal to centennial scale,all four regions began to warm in the early 10th century and experienced two cold intervals during the MCA.However,the Northwest and Central-east China were in step with each other while the warm periods in the Northeast China and Tibetan Plateau ended about 40-50 years earlier.On the multi-centennial scale,the mean temperature difference between the MCA and Little Ice Age was significant in Northeast and Central-east China but not in the Northwest China and Tibetan Plateau.Compared to the mean temperature of the 20th century,a comparable warmth in the MCA was found in the Central-east China,but there was a little cooling in Northeast China;meanwhile,there were significantly lower temperatures in Northwest China and Tibetan Plateau.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
文摘Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.15308024)a grant from Research Centre for Carbon-Strategic Catalysis,The Hong Kong Polytechnic University(CE2X).
文摘Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers 2024TIAD-CYKJCXX0121,2024NSCQ-LZX0135Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology graduate education high-quality development project,grant number gzlsz202401the Chongqing University of Technology-Chongqing LINGLUE Technology Co.,Ltd.,Electronic Information(Artificial Intelligence)graduate joint training basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.,Computer Technology graduate joint training base.
文摘Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.
基金financially supported by the National Natural Science Foundation of China(No.52071035)the Doctoral Scientific Research Foundation of Anhui University of Technology(No.RZ2400002557).
文摘Heterostructured materials as a new class can effectively avoid the inverted relationship of the“banana”curve followed by strength-ductility.The difference in grain size is the mainstream idea of the design of heterogeneous zones.However,the synergistic strengthening mechanism and deformation behavior among multi-scale heterostructures are still unclear.In this work,AZ80/AZ31 laminate with a multi-scale heterogeneous distribution of grain size,precipitates,and texture between alternate AZ31 and AZ80 component layers,which was constructed by accumulative extrusion bonding combined with aging treatment.The composite samples after 2-pass extrusion presented an outstanding strength-ductility synergy,which was attributed to the joint action of texture softening and hardening,grain refinement as well as multistage heterogeneous deformation induced(HDI)strengthening and hardening.Multi-types of heterogeneous regions provided more sites for geometrically necessary dislocation accumulation to accommodate multiple strain gradients under the constraint of multi-layer interfaces,enhancing HDI stress.The synergistic effect of great Schmid factor difference and increasing geometric compatibility factor between adjacent grains at the layer interface led to strain transfer behavior,which facilitated strain delocalization.This work expands the design ideas and preparation methods of heterostructured materials and enriches the theory of heterogeneous deformation.