Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain...Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.展开更多
This paper aims to experimentally and numerically probe fatigue behaviours and lifetimes of 3D4D(three-dimensional four-directional)braided composite I-beam under four-point flexure spectrum loading.New fatigue damage...This paper aims to experimentally and numerically probe fatigue behaviours and lifetimes of 3D4D(three-dimensional four-directional)braided composite I-beam under four-point flexure spectrum loading.New fatigue damage models of fibre yarn,matrix and fibre–matrix interface are proposed,and fatigue failure criteria and PFDA(Progressive Fatigue Damage Algorithm)are thus presented for meso-scale fatigue damage modelling of 3D4D braided composite I-beam.To validate the aforementioned model and algorithm,fatigue tests are conducted on the 3D4D braided composite I-beam under four-point flexure spectrum loading,and fatigue failure mechanisms are analyzed and discussed.Novel global–local FE(Finite Element)model based on the PFDA is generated for modelling progressive fatigue failure process and predicting fatigue life of 3D4D braided composite I-beam under four-point flexure spectrum loading.Good agreement has been achieved between experimental results and predictions,demonstrating the effective usage of new model.It is shown that matrix cracking and interfacial debonding initially initiates on top surface of top flange of I-beam,and then gradually propagates from the side surface of top flange to the intermediate web along the braiding angle,and considerable fiber breakage finally causes final fatigue failure of I-beam.展开更多
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the clas...A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the classical multi-scale method(MSM)and the method of variation of parameters.Assuming that the forced excitation is a constant,one could easily obtain the approximate analytical solution of the simpli?ed system based on the traditional MSM.Then,this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation.To certify the correctness and precision of the proposed analytical method,the van der Pol system with two scales subject to slowly periodic excitation is investigated;this system presents rich dynamical phenomena such as spiking(SP),spiking-quiescence(SP-QS),and quiescence(QS)responses.The approximate analytical expressions of the three types of responses are given by the MMSM,and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method(HBM).The results obtained by the present method are considerably better than those obtained by traditional methods,quantitatively and qualitatively,particularly when the excitation frequency is far less than the natural frequency of the system.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T...Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.展开更多
Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of ou...Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of our hospital were randomly divided into two groups from April 2018 to April 2019,in which students of the control group were treated with routine teaching,while those of the experimental group were treated with layered progressive teaching.Then,the teaching effect of the two groups was compared and analysed.Results:The assessment results of nursing students in the two groups were compared,in which the theoretical knowledge scores and practical operation scores of nursing students in the experimental group were(94.34±2.33)and(90.45±2.20)respectively.By contrast,the score of students in the control group was lower and the difference between the two groups was not significant(P<0.50).The teaching effect of students in the experimental group is more significant.Conclusion:During the process of nursing teaching in the Health Management Centre,the progressive teaching method showed a significant clinical effect and could effectively enhance students’scores.Therefore,it is positively significant for clinical development.展开更多
A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale met...A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has...Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has become a key problem restricting its development.Cyclodextrins and their derivatives,with their unique cyclic structures,can form inclusion complexes with TMP to improve its properties.This article reviews the pharmacological characteristics of TMP,the types and properties of common cyclodextrins,focusing on introducing various preparation methods of trimethoprim cyclodextrin inclusion complexes and multiple characterization methods for identifying the inclusion complexes,aiming to provide a reference for further research and development of trimethoprim cyclodextrin inclusion complexes.展开更多
The cretaceous gas reservoir in Kelasu Gas Field of the Tarim Basin is a rare ultra-deep and ultra-high pressure fractured tight sandstone gas reservoir where multi-scale discrete fractures of matrix,fracture and faul...The cretaceous gas reservoir in Kelasu Gas Field of the Tarim Basin is a rare ultra-deep and ultra-high pressure fractured tight sandstone gas reservoir where multi-scale discrete fractures of matrix,fracture and fault are developed,so its development cannot be conducted just based on static and dynamic reservoir description.In order to solve this problem,this paper establishes a numerical well test model of vertical wells based on matrix,fractures and faults(large fractures and small faults)by combining the random generation of natural fracture networks with the unstructured discrete fracture modeling method to break through the traditional continuous medium well test model.In addition,the model is solved by using the finite element method with mixed element,and the typical well test type curves under different random fracture networks are obtained.And the following research results are obtained.First,based on the observed data,the fracture network distribution modes of fractured tight sandstone gas reservoirs are classified into three categories.The influence of random generation of fracture networks on typical well test type curves is discussed.The results of discrete fracture well test model are compared with those of the traditional continuous medium well test model,and the applicable conditions of the traditional continuous medium well test model is determined.Second,there are great differences between the results of discrete fracture model and those of dual porosity medium model.1 The dual porosity medium model is a special case of the discrete fracture model,in which the fractures are evenly distributed within infinitely small spacing.Third,the characteristics of well test type curves under three fracture network distribution modes are discussed.The well test type curves that cannot be interpreted by the conventional dual/triple porosity continuous medium model are successfully interpreted by using the established well test interpretation model of random discrete fracture.The curve matching effect is ideal and the interpreted parameters are reasonable.In conclusion,the new model and the new method reveal the development mechanism of step-by-step production and coordinated gas supply between media of different scales,explain the development characteristics of large inter-well productivity difference and abnormal rapid inter-well pressure response,and provide a reference for the development of similar gas reservoirs.展开更多
In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving ...In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving drought-resistance, flood-re- sistance, salt-stress resistance, cold-hardiness and heat-resistance. In addition prospects of apple resistance research are proposed, as well.展开更多
Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failur...Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately.展开更多
Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensi...Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.展开更多
基金supported by the National Natural Science Foundation of China(No.12172001)the University Natural Science Research Project of Anhui Province(No.2022AH020029)+1 种基金the Anhui Provincial Natural Science Foundation(Nos.2208085Y01 and 2008085QA23)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province(No.2023-YF129),China.
文摘Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.
基金supported by the National Natural Science Foundation of China(No.12472340).
文摘This paper aims to experimentally and numerically probe fatigue behaviours and lifetimes of 3D4D(three-dimensional four-directional)braided composite I-beam under four-point flexure spectrum loading.New fatigue damage models of fibre yarn,matrix and fibre–matrix interface are proposed,and fatigue failure criteria and PFDA(Progressive Fatigue Damage Algorithm)are thus presented for meso-scale fatigue damage modelling of 3D4D braided composite I-beam.To validate the aforementioned model and algorithm,fatigue tests are conducted on the 3D4D braided composite I-beam under four-point flexure spectrum loading,and fatigue failure mechanisms are analyzed and discussed.Novel global–local FE(Finite Element)model based on the PFDA is generated for modelling progressive fatigue failure process and predicting fatigue life of 3D4D braided composite I-beam under four-point flexure spectrum loading.Good agreement has been achieved between experimental results and predictions,demonstrating the effective usage of new model.It is shown that matrix cracking and interfacial debonding initially initiates on top surface of top flange of I-beam,and then gradually propagates from the side surface of top flange to the intermediate web along the braiding angle,and considerable fiber breakage finally causes final fatigue failure of I-beam.
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
基金the National Natural Science Foundation of China(Nos.11672191,11772206,and U1934201)the Hundred Excellent Innovative Talents Support Program in Hebei University(No.SLRC2017053)。
文摘A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the classical multi-scale method(MSM)and the method of variation of parameters.Assuming that the forced excitation is a constant,one could easily obtain the approximate analytical solution of the simpli?ed system based on the traditional MSM.Then,this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation.To certify the correctness and precision of the proposed analytical method,the van der Pol system with two scales subject to slowly periodic excitation is investigated;this system presents rich dynamical phenomena such as spiking(SP),spiking-quiescence(SP-QS),and quiescence(QS)responses.The approximate analytical expressions of the three types of responses are given by the MMSM,and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method(HBM).The results obtained by the present method are considerably better than those obtained by traditional methods,quantitatively and qualitatively,particularly when the excitation frequency is far less than the natural frequency of the system.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
基金Project of National Center of Technology Innovation for Dairy"Study on the Key Technologies of Microplastics Detection for New Pollutants in Dairy Ingredient Water"(2023-KFKT-24).
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
文摘Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.
文摘Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of our hospital were randomly divided into two groups from April 2018 to April 2019,in which students of the control group were treated with routine teaching,while those of the experimental group were treated with layered progressive teaching.Then,the teaching effect of the two groups was compared and analysed.Results:The assessment results of nursing students in the two groups were compared,in which the theoretical knowledge scores and practical operation scores of nursing students in the experimental group were(94.34±2.33)and(90.45±2.20)respectively.By contrast,the score of students in the control group was lower and the difference between the two groups was not significant(P<0.50).The teaching effect of students in the experimental group is more significant.Conclusion:During the process of nursing teaching in the Health Management Centre,the progressive teaching method showed a significant clinical effect and could effectively enhance students’scores.Therefore,it is positively significant for clinical development.
基金Supported by the National Natural Science Foundation of China(51105195,51075204)the Aeronautical Science Foundation of China(2011ZB52024)
文摘A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
基金Academic Fund for Students of Foshan University in 2024(Project No.:xsjj202409zrb11)。
文摘Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has become a key problem restricting its development.Cyclodextrins and their derivatives,with their unique cyclic structures,can form inclusion complexes with TMP to improve its properties.This article reviews the pharmacological characteristics of TMP,the types and properties of common cyclodextrins,focusing on introducing various preparation methods of trimethoprim cyclodextrin inclusion complexes and multiple characterization methods for identifying the inclusion complexes,aiming to provide a reference for further research and development of trimethoprim cyclodextrin inclusion complexes.
基金supported by the Major Science and Technology Project of PetroChina Company Limited“Research and application of key technologies for development of deep and ultra-deep gas reservoirs in Kuqa Depression(No.2018E-1803).
文摘The cretaceous gas reservoir in Kelasu Gas Field of the Tarim Basin is a rare ultra-deep and ultra-high pressure fractured tight sandstone gas reservoir where multi-scale discrete fractures of matrix,fracture and fault are developed,so its development cannot be conducted just based on static and dynamic reservoir description.In order to solve this problem,this paper establishes a numerical well test model of vertical wells based on matrix,fractures and faults(large fractures and small faults)by combining the random generation of natural fracture networks with the unstructured discrete fracture modeling method to break through the traditional continuous medium well test model.In addition,the model is solved by using the finite element method with mixed element,and the typical well test type curves under different random fracture networks are obtained.And the following research results are obtained.First,based on the observed data,the fracture network distribution modes of fractured tight sandstone gas reservoirs are classified into three categories.The influence of random generation of fracture networks on typical well test type curves is discussed.The results of discrete fracture well test model are compared with those of the traditional continuous medium well test model,and the applicable conditions of the traditional continuous medium well test model is determined.Second,there are great differences between the results of discrete fracture model and those of dual porosity medium model.1 The dual porosity medium model is a special case of the discrete fracture model,in which the fractures are evenly distributed within infinitely small spacing.Third,the characteristics of well test type curves under three fracture network distribution modes are discussed.The well test type curves that cannot be interpreted by the conventional dual/triple porosity continuous medium model are successfully interpreted by using the established well test interpretation model of random discrete fracture.The curve matching effect is ideal and the interpreted parameters are reasonable.In conclusion,the new model and the new method reveal the development mechanism of step-by-step production and coordinated gas supply between media of different scales,explain the development characteristics of large inter-well productivity difference and abnormal rapid inter-well pressure response,and provide a reference for the development of similar gas reservoirs.
基金Supported by Shandong Provincial Natural Science Foundation in China(ZR2011CM034)~~
文摘In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving drought-resistance, flood-re- sistance, salt-stress resistance, cold-hardiness and heat-resistance. In addition prospects of apple resistance research are proposed, as well.
基金co-supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China (No. 11302105)
文摘Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately.
基金Projects 50574072, 50874089 and 50534049 supported by the National Natural Science Foundation of China08JK366 by the Special Scientific Foundation of Educational Committee of Shaanxi Province
文摘Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.