期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
1
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
2
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
3
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(GAN) multi-scale convolution
在线阅读 下载PDF
Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network
4
作者 Ming Chen Yanfei Niu +1 位作者 Ping Qi Fucheng Wang 《Computers, Materials & Continua》 2025年第12期5015-5035,共21页
This research addresses the critical challenge of enhancing satellite images captured under low-light conditions,which suffer from severely degraded quality,including a lack of detail,poor contrast,and low usability.O... This research addresses the critical challenge of enhancing satellite images captured under low-light conditions,which suffer from severely degraded quality,including a lack of detail,poor contrast,and low usability.Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks(e.g.,spacecraft on-orbit connection,spacecraft surface repair,space debris capture)that rely on clear visual information.Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions:(1)an improved U-Net(IU-Net)generator with multi-scale feature fusion in the contracting path for richer semantic feature extraction,and(2)a Global Illumination Attention Module(GIA)at the end of the contracting path to couple local and global information,significantly improving detail recovery and illumination adjustment.The proposed algorithm operates in an unsupervised manner.It is trained and evaluated on our self-constructed,unpaired Spacecraft Dataset for Detection,Enforcement,and Parts Recognition(SDDEP),designed specifically for low-light enhancement tasks.Extensive experiments demonstrate that our method outperforms the baseline EnlightenGAN,achieving improvements of 2.7%in structural similarity(SSIM),4.7%in peak signal-to-noise ratio(PSNR),6.3%in learning perceptual image patch similarity(LPIPS),and 53.2%in DeltaE 2000.Qualitatively,the enhanced images exhibit higher overall and local brightness,improved contrast,and more natural visual effects. 展开更多
关键词 Global illumination attention generative adversarial networks low-light enhancement global-local discriminator multi-scale feature fusion
在线阅读 下载PDF
Research on clothing patterns generation based on multi-scales self-attention improved generative adversarial network 被引量:1
5
作者 Zi-yan Yu Tian-jian Luo 《International Journal of Intelligent Computing and Cybernetics》 EI 2021年第4期647-663,共17页
Purpose-Clothing patterns play a dominant role in costume design and have become an important link in the perception of costume art.Conventional clothing patterns design relies on experienced designers.Although the qu... Purpose-Clothing patterns play a dominant role in costume design and have become an important link in the perception of costume art.Conventional clothing patterns design relies on experienced designers.Although the quality of clothing patterns is very high on conventional design,the input time and output amount ratio is relative low for conventional design.In order to break through the bottleneck of conventional clothing patterns design,this paper proposes a novel way based on generative adversarial network(GAN)model for automatic clothing patterns generation,which not only reduces the dependence of experienced designer,but also improve the input-output ratio.Design/methodology/approach-In view of the fact that clothing patterns have high requirements for global artistic perception and local texture details,this paper improves the conventional GAN model from two aspects:a multi-scales discriminators strategy is introduced to deal with the local texture details;and the selfattention mechanism is introduced to improve the global artistic perception.Therefore,the improved GAN called multi-scales self-attention improved generative adversarial network(MS-SA-GAN)model,which is used for high resolution clothing patterns generation.Findings-To verify the feasibility and effectiveness of the proposed MS-SA-GAN model,a crawler is designed to acquire standard clothing patterns dataset from Baidu pictures,and a comparative experiment is conducted on our designed clothing patterns dataset.In experiments,we have adjusted different parameters of the proposed MS-SA-GAN model,and compared the global artistic perception and local texture details of the generated clothing patterns.Originality/value-Experimental results have shown that the clothing patterns generated by the proposed MS-SA-GANmodel are superior to the conventional algorithms in some local texture detail indexes.In addition,a group of clothing design professionals is invited to evaluate the global artistic perception through a valencearousal scale.The scale results have shown that the proposed MS-SA-GAN model achieves a better global art perception. 展开更多
关键词 Clothing-patterns generative adversarial network multi-scales discriminators Self-attention mechanism Global artistic perception
在线阅读 下载PDF
基于字体特征与多尺度PatchGAN的中文字体风格转换研究 被引量:4
6
作者 程若然 赵晓丽 周浩军 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期1228-1237,共10页
针对现有中文字体风格转换方法生成字符图像质量低以及生成字体图像与目标字体图像风格不一致的问题,提出基于字体特征与多尺度patch生成对抗网络的中文字体风格转换方法.首先,根据字体特点设计两个特征提取网络,分别提取字体风格特征... 针对现有中文字体风格转换方法生成字符图像质量低以及生成字体图像与目标字体图像风格不一致的问题,提出基于字体特征与多尺度patch生成对抗网络的中文字体风格转换方法.首先,根据字体特点设计两个特征提取网络,分别提取字体风格特征和字符内容特征;然后,将两个特征输入生成器,利用字体风格特征约束生成字符图像的风格,字符内容特征约束生成字符图像的字形;最后,将生成字符图像输入到多尺度patch判别器中,对生成结果的多尺度图像块判断真假.实验结果表明,所提方法有效提升了生成字符图像的质量以及与目标字体的风格一致性. 展开更多
关键词 中文字体风格转换 字体特征提取 多尺度patch生成对抗网络 深度学习
在线阅读 下载PDF
Adversarial Attack on Object Detection via Object Feature-Wise Attention and Perturbation Extraction
7
作者 Wei Xue Xiaoyan Xia +2 位作者 Pengcheng Wan Ping Zhong Xiao Zheng 《Tsinghua Science and Technology》 2025年第3期1174-1189,共16页
Deep neural networks are commonly used in computer vision tasks,but they are vulnerable to adversarial samples,resulting in poor recognition accuracy.Although traditional algorithms that craft adversarial samples have... Deep neural networks are commonly used in computer vision tasks,but they are vulnerable to adversarial samples,resulting in poor recognition accuracy.Although traditional algorithms that craft adversarial samples have been effective in attacking classification models,the attacking performance degrades when facing object detection models with more complex structures.To address this issue better,in this paper we first analyze the mechanism of multi-scale feature extraction of object detection models,and then by constructing the object feature-wise attention module and the perturbation extraction module,a novel adversarial sample generation algorithm for attacking detection models is proposed.Specifically,in the first module,based on the multi-scale feature map,we reduce the range of perturbation and improve the stealthiness of adversarial samples by computing the noise distribution in the object region.Then in the second module,we feed the noise distribution into the generative adversarial networks to generate adversarial perturbation with strong attack transferability.By doing so,the proposed approach possesses the ability to better confuse the judgment of detection models.Experiments carried out on the DroneVehicle dataset show that our method is computationally efficient and works well in attacking detection models measured by qualitative analysis and quantitative analysis. 展开更多
关键词 adversarial attack transfer attack object detection generative adversarial networks multi-scale feature map
原文传递
宽型自注意力融合密集型残差网络的图像去雾 被引量:9
8
作者 邬开俊 丁元 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期13-22,共10页
当前去雾算法无法很好解决不均匀雾霾图像去雾的问题,为此提出了一种宽型自注意力融合的条件生成对抗网络图像去雾算法.在算法中加入了宽型自注意力机制,使得算法可以为不同雾度区域特征自动分配不同权重;算法特征提取部分采用DenseNet... 当前去雾算法无法很好解决不均匀雾霾图像去雾的问题,为此提出了一种宽型自注意力融合的条件生成对抗网络图像去雾算法.在算法中加入了宽型自注意力机制,使得算法可以为不同雾度区域特征自动分配不同权重;算法特征提取部分采用DenseNet融合自注意力网络架构,DenseNet网络在保证网络中层与层之间最大程度的信息传输的前提下,直接将所有层连接起来,获取更多的上下文信息,更有效利用提取的特征;融合自注意力可以从编码器部分提取的特征中学习复杂的非线性,提高网络准确估计不同雾度的能力.算法采用Patch判别器,增强去雾图像的局部和全局一致性.实验结果证明,算法网络在NTIRE 2020、NTIRE2021和O-Haze数据集上的定性比较,相比于其他先进算法得到更好的视觉效果;定量比较中,相较于所选择先进算法的最好成绩,峰值信噪比和结构相似性指数分别提高了0.4和0.02. 展开更多
关键词 图像去噪 图像去雾 生成对抗网络 宽型自注意力机制 马尔科夫判别器
在线阅读 下载PDF
基于图像块相似性和补全生成的人脸复原算法 被引量:5
9
作者 苏婷婷 王娜 《科学技术与工程》 北大核心 2019年第13期171-176,共6页
图像获取过程中,由于成像距离、成像设备分辨率等因素的限制,成像系统难以无失真地获取原始场景中的信息,产生变形、模糊、降采样和噪声等问题,针对上述情况下降质图像的复原问题,提出了适用于低分辨率,低先验知识情况下的人脸复原方法... 图像获取过程中,由于成像距离、成像设备分辨率等因素的限制,成像系统难以无失真地获取原始场景中的信息,产生变形、模糊、降采样和噪声等问题,针对上述情况下降质图像的复原问题,提出了适用于低分辨率,低先验知识情况下的人脸复原方法,通过基于图像相似性的期望块log相似性EPLL (expected patch log likelihood)框架来构建人脸复原效果的失真函数,利用生成对抗网络的图像补全式生成过程来复原图像。所提算法在加噪率50%以及更高情况下可以保持较好的人脸图像轮廓与视觉特点,在复原加噪20%的降质图像时,相比传统的基于图像块相似性的算法,本文算法复原结果的统计特征峰值信噪比PSNR (peak signal-noise ratio)与结构相似度SSIM (structural similarity)值具有明显优势。 展开更多
关键词 图像复原 图像块相似性 生成对抗网络 人脸复原 图像补全
在线阅读 下载PDF
基于生成对抗网络的图像阴影消除算法 被引量:4
10
作者 石恒 张玲 《计算机科学》 CSCD 北大核心 2021年第6期145-152,共8页
虽然现有基于深度学习的图像阴影消除方法已取得了一定的进步,但是这些方法主要关注图像本身,没有很好地探索其他额外与阴影相关的信息,因此这些方法常常存在图像纹理模糊、内容不协调等问题。针对这些问题,文中基于生成对抗网络(Genera... 虽然现有基于深度学习的图像阴影消除方法已取得了一定的进步,但是这些方法主要关注图像本身,没有很好地探索其他额外与阴影相关的信息,因此这些方法常常存在图像纹理模糊、内容不协调等问题。针对这些问题,文中基于生成对抗网络(Generative Adversarial Network, GAN),提出了一种新的阴影消除网络模型。该方法首先从全局上生成一个粗糙的阴影消除结果,再利用与阴影相关的残差信息对粗糙的结果在颜色和细节上进行局部优化,从而获得更加真实自然的无阴影图像。生成网络包含3个编码-解码结构,首先利用第1个编码-解码结构对阴影图像进行整体光照恢复,生成一个初始的阴影消除结果;同时将与阴影相关的残差信息作为辅助信息输入第2个编码-解码器,对初始结果进行进一步优化;为了避免阴影区域出现纹理不协调等问题,最后利用第3个编码-解码器对阴影区域细节纹理进行修正,使得生成的阴影消除图像更加真实自然。对抗网络由Patch鉴别器构成,用来鉴别图像阴影消除结果的真实性。实验结果表明,与目前的图像阴影消除方法相比,无论在阴影区域还是在非阴影区域上所提方法都达到了最佳的RMSE值,且该方法生成的阴影消除图像与真实无阴影图像更加接近,有效解决了纹理模糊等问题,证实了该方法的有效性和可行性。 展开更多
关键词 阴影消除 生成对抗网络 残差信息 编码-解码结构 patch鉴别器
在线阅读 下载PDF
对抗样本生成在人脸识别中的研究与应用 被引量:3
11
作者 张加胜 刘建明 +2 位作者 韩磊 纪飞 刘煌 《计算机应用与软件》 北大核心 2019年第5期158-164,共7页
随着深度学习模型在人脸识别、无人驾驶等安全敏感性任务中的广泛应用,围绕深度学习模型展开的攻防逐渐成为机器学习和安全领域研究的热点。黑盒攻击作为典型的攻击类型,在不知模型具体结构、参数、使用的数据集等情况下仍能进行有效攻... 随着深度学习模型在人脸识别、无人驾驶等安全敏感性任务中的广泛应用,围绕深度学习模型展开的攻防逐渐成为机器学习和安全领域研究的热点。黑盒攻击作为典型的攻击类型,在不知模型具体结构、参数、使用的数据集等情况下仍能进行有效攻击,是真实背景下最常用的攻击方法。随着社会对人脸识别技术的依赖越来越强,在安全性高的场合里部署神经网络,往往容易忽略其脆弱性带来的安全威胁。充分分析深度学习模型存在的脆弱性并运用生成对抗网络,设计一种新颖的光亮眼镜贴片样本,能够成功欺骗基于卷积神经网络的人脸识别系统。实验结果表明,基于生成对抗网络生成的对抗眼镜贴片样本能够成功攻击人脸识别系统,性能优于传统的优化方法。 展开更多
关键词 深度学习 黑盒攻击 脆弱性 生成对抗网络 眼镜贴片
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部