A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insigh...Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.展开更多
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin...Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO w...A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil...Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air poll...Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-form...Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.展开更多
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from...Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug devel...Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.展开更多
The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet...The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet developmental requirements.This paper proposes an adaptive bump control scheme and employs dynamic mesh technology for numerical simulation to investigate the unsteady control effects of adaptive bumps.The obtained results indicate that the use of moving bumps to control shock wave/boundary layer interactions is feasible.The adaptive control effects of five different bump speeds are evaluated.Within the range of bump speeds studied,the analysis of the flow field structure reveals the patterns of change in the separation zone area during the control process,as well as the relationship between the bump motion speed and the control effect on the separation zone.It is concluded that the moving bump endows the boundary layer with additional energy.展开更多
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre...Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金supported by the Natural Science Foundation of Wenzhou University of Technology,China(Grant No.:ky202211).
文摘Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.
基金supported by the National Natural Science Foundation of China(52172091,52172295)Defense Industrial Technology Development Program(JCKY2023605C002)+4 种基金Frontier Leading Technology Basic Research Major Project of Jiangsu Province(SBK2023050110)the National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering(NO.61422062301)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD202305)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA202303)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0371).
文摘Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金This study was supported by the National Key R&D Program of China through Grant Nos.2018YFC1505901 and 2018YFA0606203the National Nature Science Foundation of China through Grant Nos.41922035,41575062,41520104008+1 种基金Key Research Program of Frontier Sciences of CAS through Grant No.QYZDB-SSW-DQC017the Youth Innovation Promotion Association,Chinese Academy of Sciences.The first author acknowledges the support from the China Scholarship Council(CSC)Grant No.201904910516.
文摘A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
文摘Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金supported by the National Natural Science Foundation of China(42277087,42130708,42471021,42277482,and 42361144876)the Natural Science Foundation of Guangdong Province(2024A1515012550)+3 种基金the Hainan Institute of National Park grant(KY-23ZK01)the Tsinghua Shenzhen International Graduate School Cross-disciplinary Research and Innovation Fund Research Plan(JC2022011)the Shenzhen Science and Technology Program(JCYJ20240813112106009 and ZDSYS20220606100806014)the Scientific Research Start-up Funds(QD2021030C)from Tsinghua Shenzhen International Graduate School。
文摘Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金financial support from the Department of Science and Technology of Jilin Province(20240304104SF,20240304103SF)the Research and Innovation Fund of the Beihua University for the Graduate Student(Major Project 2023012)。
文摘Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.
基金supported by A*STAR under the“Nanosystems at the Edge”program(Grant No.A18A4b0055)Ministry of Education(MOE)under the research grant of R-263-000-F18-112/A-0009520-01-00+1 种基金National Research Foundation Singapore grant CRP28-2022-0038the Reimagine Re-search Scheme(RRSC)Project(Grant A-0009037-02-00&A0009037-03-00)at National University of Singapore.
文摘Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by grants from the National Natural Science Foundation of China(Grant No.:T2341008)Intelligent and Precise Research on TCM for Spleen and Stomach Diseases(20233930063).
文摘Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0405300)the National Natural Science Foundation of China(Grant No.11972368)the Natural Science Foundation of Hunan Province(Grant No.2021JJ10045).
文摘The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet developmental requirements.This paper proposes an adaptive bump control scheme and employs dynamic mesh technology for numerical simulation to investigate the unsteady control effects of adaptive bumps.The obtained results indicate that the use of moving bumps to control shock wave/boundary layer interactions is feasible.The adaptive control effects of five different bump speeds are evaluated.Within the range of bump speeds studied,the analysis of the flow field structure reveals the patterns of change in the separation zone area during the control process,as well as the relationship between the bump motion speed and the control effect on the separation zone.It is concluded that the moving bump endows the boundary layer with additional energy.
基金supported by the National Natural Science Foundation of China(Nos.82173746 and U23A20530)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.