期刊文献+
共找到2,154篇文章
< 1 2 108 >
每页显示 20 50 100
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
1
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Elevated temperature magnetic microstructures and demagnetization mechanism for grain boundary diffused dual-main-phase(Nd,Ce)-Fe-B magnets 被引量:1
2
作者 Yifei Xiao Lele Zhang +7 位作者 Wei Yang Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Materials Science & Technology》 2025年第4期10-23,共14页
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T... The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials. 展开更多
关键词 Magnetic microstructures Dual-main-phase (Nd Ce)-Fe-B Diffused Dy Rare earth permanent magnet materials grain boundary diffusion process(GBDP)
原文传递
The effect of grain size and rolling reduction on microstructure evolution and annealing hardening response of a Mg-3Gd alloy
3
作者 F.Han X.Luo +6 位作者 Q.Liu Z.Hou K.Marthinsen G.L.Wu C.Hatzoglou P.Kontis X.Huang 《Journal of Magnesium and Alloys》 2025年第7期3037-3054,共18页
Mg-3Gd(wt.%)samples with different initial grain sizes were prepared to evaluate the grain size effect on microstructural evolution during cold rolling and subsequent annealing hardening response.The deformation behav... Mg-3Gd(wt.%)samples with different initial grain sizes were prepared to evaluate the grain size effect on microstructural evolution during cold rolling and subsequent annealing hardening response.The deformation behavior and mechanical response of the as-rolled and annealed samples were systematically investigated by a combination of electron microscopy and microhardness characterization.The results show that the twinning activities were highly suppressed in the fine-grained samples during rolling.Upon increasing the rolling reduction to 40%,ultra-fine grain structures with a volume fraction of∼28%were formed due to the activation of multiple slip systems.Conversely,twinning dominated the early stages of deformation in the coarse-grained samples.After a 10%rolling reduction,numerous twins with a volume fraction of∼23%were formed.Further increasing the rolling reduction to 40%,high-density dislocations were activated and twin structures with a volume fraction of∼36%were formed.The annealing hardening response of deformed samples was effectively enhanced compared to that of the non-deformed samples,which was attributed to the enhanced Gd segregation along grain boundaries,twin boundaries and dislocation cores.Moreover,the grain size and rolling reduction were found to affect the microstructure evolution during annealing,resulting in a notable difference in the annealing hardening response of Mg-3Gd alloy between samples of different grain sizes deformed to different strains.These findings highlight the crucial importance of microstructural and processing parameters in the design of high-strength,cost-effective Mg alloys. 展开更多
关键词 Mg-Gd alloy grain size effect Deformation mechanism microstructural evolution Annealing hardening
在线阅读 下载PDF
Correlation between grain size,mechanical properties and deformed microstructure of Fe-20Mn-6Al-0.6C-0.15Si low-density steel
4
作者 Qi Zhang Guang-hui Chen +2 位作者 Zheng-liang Xue Zheng-kun Chen Guang Xu 《Journal of Iron and Steel Research International》 2025年第1期282-292,共11页
The effects of austenite grain size on the deformed microstructure and mechanical properties of an Fe-20Mn-6Al-0.6C-0.15Si(wt.%)low-density steel were investigated.The microstructure of the experimental steel after so... The effects of austenite grain size on the deformed microstructure and mechanical properties of an Fe-20Mn-6Al-0.6C-0.15Si(wt.%)low-density steel were investigated.The microstructure of the experimental steel after solution treatment was single austenitic phase.The austenite grain size increased with solution temperature and time.A model was established to show the relationship between temperature,time and austenite grain size for the experimental steel.In addition,as the solution temperature increased,the strength decreased,while the elongation first increased and then decreased.This decrease in elongation after solution treatment at 1100℃ for 90 min is contributed to the over-coarse austenite grains.However,after solution treatment at 900℃ for 90 min,the strength-elongation product reached the highest value of 44.4 GPa%.As the austenite grain size increased,the intensity of<111>//tensile direction fiber decreased.This was accompanied by a decrease in dislocation density,resulting in a lower fraction of low-angle grain boundaries and a lower work hardening rate.Therefore,the austenite grain size has a critical influence on the mechanical properties of the low-density steels.Coarser grains lead to a lower yield strength due to the Hall-Petch effect and a lower tensile strength because of lower dislocation strengthening. 展开更多
关键词 Austenitic low-density steel Solution treatment grain size Mechanical property Deformed microstructure
原文传递
Microstructure,microchemistry,and micro-magnetism of dysprosium grain boundary diffused(Nd,Ce)-Fe-B magnets
5
作者 Yifei Xiao Lele Zhang +6 位作者 Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Rare Earths》 2025年第3期556-568,I0005,共14页
The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain... The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain boundary diffused magnets is discussed.The domains perpendicular to the c-axis(easy magnetization direction)show a typical maze-like pattern,while those parallel to the c-axis show the characte ristics of plate domains.The significant gradient change is shown in the concentration of Dy with the direction of diffusion from the surface to the interior.Dy diffuses along grain boundaries and(Dy,Nd)_(2)Fe_(14)B layer with a high anisotropy field formed around the grains.Through in-situ electron probe micro-analysis/magnetic force microscopy(EPMA/MFM),it is found that the average domain width decreases,and the proportion of single domain grains increases as diffusion depth increases.This is caused by both the change of concentration and distribution of Dy.The grain boundary diffusion process changes the microstructure and microchemistry inside the magnet,and these local magnetism differences can be reflected by the configuration of the magnetic domain structure. 展开更多
关键词 Magnetic microstructures (Nd Ce)-Fe-B Rare earths Magnetic force microscope grain boundary diffusion process(GBDP) In-situ
原文传递
A multi-scale grained microstructure of the surface nanocrystallized 304 stainless steel sheets after warm-rolling
6
作者 CHEN Aiying1)and ZHANG Junbao2)1)Shanghai Institute of Technology,Shanghai 200235,China2)Advanced Technology Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期13-16,共4页
An ultrafine grained microstructure was obtained for 304 stainless steel(304SS)sheets by using surface nanocrystallization and warm-rolling.The microstructure and mechanical properties were determined by X-ray diffrac... An ultrafine grained microstructure was obtained for 304 stainless steel(304SS)sheets by using surface nanocrystallization and warm-rolling.The microstructure and mechanical properties were determined by X-ray diffraction(XRD),transmission electron microscope(TEM)and a test on microhardness.Experimental results were shown that the microstructure was featured by a continuous distribution from the nanocrystalline on the surface to micro-grains in the center,in which the volume fraction of the micro-sized grains is about 40% in the surface layer.This multi-scale grained microstructure was composed of austenite and martensite phases with a gradient increasing volume fraction of austenite from the surface to the centre.The microhardness of the resultant steel was higher than 150% of that as received,due to the refined grains and strain-induced martensitic transformation.The hardness distribution was consistent with the microstructural variation,suggesting a good combination of high strength and improved ductility. 展开更多
关键词 multi-scale grained microstructure surface mechanical attrition treatment warm-rolling 304 stainless steel mechanical property
在线阅读 下载PDF
Effect of High-Pressure Torsion on Microstructure and Secondary Phase Distribution of Mg-3Zn-1Ca-0.5Sr Alloy
7
作者 Zhang Jiazhen Li Yongjun +6 位作者 Ma Minglong Zhang Kui Li Xinggang Shi Guoliang Yuan Jiawei Sun Zhaoqian Shi Wenpeng 《稀有金属材料与工程》 北大核心 2025年第6期1457-1461,共5页
Degradable metals,represented by magnesium and magnesium alloys,have attracted significant attention as fracture internal fixation and bone defect repairing materials due to their good biocompatibility,suitable elasti... Degradable metals,represented by magnesium and magnesium alloys,have attracted significant attention as fracture internal fixation and bone defect repairing materials due to their good biocompatibility,suitable elastic modulus and degradable properties.The Mg-3Zn-1Ca-0.5Sr(wt%)alloy is considered a competitor in the biomaterial field thanks to its unique composition of essential nutrients and excellent mechanical properties.However,the presence of coarse second-phase particles in the alloy accelerates its degradation rate and causes excessive gas formation during implantation,which restricts the alloy's potential for clinical device applications.In order to further optimize the properties of the alloy,extrusion combined with high-pressure torsion(HPT)was adopted for deformation processing.The results show that by optimizing the material processing means,the grain can be refined and broken,and the second-phase distribution can be improved,thus improving the microstructure,mechanical properties,and corrosion resistance of the alloy.After 15 cycles of HPT processing,the grains of the alloy are significantly refined to the nanometer scale,reaching approximately 98 nm.Additionally,the second-phase distribution is greatly improved,transforming the original streamlined structure into a more dispersed distribution.This change in microstructure leads to a significant strengthening effect on the alloy,with a noticeable increase in hardness from 60.3 HV in the as-extruded state to 98.5 HV. 展开更多
关键词 high-pressure torsion BIOMATERIALS microstructure Mg-Zn-Ca-Sr ultra-fine grain
原文传递
Influence of Undercooling on the Solidification Behaviour and Microstructure of Non-equilibrium Solidification of Cu-based Alloys
8
作者 LI Hejun AN Hongen +6 位作者 Willey Liew Yun Hsien Ismal Saad Bih Lii Chuab Nancy Julius Siambun CAO Shichao WANG Hongfu YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期610-618,共9页
The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increas... The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue. 展开更多
关键词 UNDERCOOLING microstructure grain refinement solidification rate
原文传递
Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys
9
作者 WANG Junyuan DU Wenhua +1 位作者 HAO Bohao WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1151-1161,共11页
By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in ... By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in both alloys across both large and small undercooling ranges.High-speed photography was used to analyze the relationship between solidification front morphology and undercooling,showing that dendrite remelting and fragmentation caused grain refinement under small undercooling,while stress-induced recrystallization is responsible under large undercooling.Microhardness testing further demonstrates a sudden drop in microhardness near the critical undercooling point,providing evidence for grain refinement due to recrystallization in large undercooling tissues. 展开更多
关键词 UNDERCOOLING microstructure grain refinement solidification rate
原文传递
Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
10
作者 Wanqiu Yu Yanxiang Sun +1 位作者 Lihua Liu Pingli Zhang 《Chinese Physics B》 2025年第1期407-412,共6页
The microstructure and magnetic properties of Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1)(Mo-free)and Fe_(40)Co_(40)Zr_(5)Mo_(4)B_(10)Ge_(1)(Mocontaining)nanocrystalline alloys,prepared using an amorphous crystallization method,... The microstructure and magnetic properties of Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1)(Mo-free)and Fe_(40)Co_(40)Zr_(5)Mo_(4)B_(10)Ge_(1)(Mocontaining)nanocrystalline alloys,prepared using an amorphous crystallization method,were investigated.Mo addition affects the crystallization of the Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1) amorphous alloy and decreases the grain size of theα-Fe(Co)phase below 650℃.For the Mo-free alloy annealed at 600℃ and the Mo-containing alloy annealed at 575℃,with a singleα-Fe(Co)crystallization phase and approximately similar crystallization volume fractions,the Mo-containing alloy showed smaller,more regularly shaped grains and a significantly narrower grain-size distribution than the Mo-free alloy.The Fe and Co contents in the nanograins of the two alloys also differed.For the Mo-free alloy,a higher concentration of Co distributed in the residual amorphous matrix.For the Mo-containing alloy,a higher concentration Co dissolved in the nanograins.The specific saturation magnetization and coercivity of the Mo-free alloy were 1.05-and 1.59-times higher than those of the Mo-containing alloy,respectively. 展开更多
关键词 nanostructured materials Mo addition microstructure grain size
原文传递
Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys
11
作者 Qi Zhou Yufeng Xia +4 位作者 Yu Duan Baihao Zhang Yuqiu Ye Peitao Guo Lu Li 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1095-1108,共14页
The microstructural evolution and mechanical properties of Mg-8.0Al-xYb-0.5Zn(wt%,x=0,1,2)cast alloys were investigated.With increasing Yb content,a significant grain refinement was observed,accompanied by the continu... The microstructural evolution and mechanical properties of Mg-8.0Al-xYb-0.5Zn(wt%,x=0,1,2)cast alloys were investigated.With increasing Yb content,a significant grain refinement was observed,accompanied by the continuous refinement and fragmentation of the initial β-Mg_(17)Al_(12) phase network.Concurrently,the Al_(3)Yb phase formed and coarsened.Calculations including formation enthalpy and lattice misfit,confirm that the Al_(3)Yb phase,which nucleates prior to theα-Mg and β-Mg_(17)Al_(12) phases and exhibits a low lattice misfit with their low-index planes,serves as an effective heterogeneous nucleation site,significantly contributing to the observed microstructural refinement.Furthermore,Yb addition fundamentally suppresses constitutional supercooling by consuming Al atoms,which possess a high growth restriction factor,for the formation of Al-Yb phases.Subsequent tensile testing reveals that Yb solute promotes the generation of extension twins and the accumulation of dislocations during deformation,leading to a marked enhancement in the work-hardening capacity of the Yb-containing alloys.Benefiting from the refined microstructure and enhanced work hardening,the Mg-8.0Al-1.0Yb-0.5Zn alloy exhibits a favorable balance between mechanical strength and ductility,achieving an ultimate tensile strength of~249.8 MPa and an elongation of~11.70%,respectively. 展开更多
关键词 Mg-Al-Yb-Zn cast alloys microstructure Mechanical properties grain refinement
原文传递
Effect of direct quenching after hot rolling on hot formed microstructure and mechanical properties of 2.2 GPa grade steel
12
作者 Mai Wang Jiang Chang +3 位作者 Rong Zhu Zhen-li Mi Yan-xin Wu Lei Li 《Journal of Iron and Steel Research International》 2025年第8期2452-2462,共11页
A martensitic initial microstructure before hot forming was prepared by direct quenching after hot rolling of the hot formed steel and the effect of such initial microstructure on mechanical properties of steel was an... A martensitic initial microstructure before hot forming was prepared by direct quenching after hot rolling of the hot formed steel and the effect of such initial microstructure on mechanical properties of steel was analyzed. The process of direct quenching after hot rolling which replaced the steps of coiling and cold rolling was termed as compact process. As the temperature before direct quenching falls within the non-recrystallization range, the deformed austenite grains exhibit flattened morphology along the hot rolling direction, and the high-density dislocations and significant strain energy in deformed austenite are inherited by directly quenched martensite. Moreover, due to promotion of austenite nucleation and subsequent recrystallization during the reverse transformation process in hot forming, both reversed austenite grains and martensite laths are significantly refined. Compared to the conventional process with an initial microstructure consisting of fully recrystallized ferrite and cementite, the compact process reduces average prior austenite grain sizes from 12.5 to 5.5 μm and martensite lath widths from 202 to 123 nm. Additionally, the compact process results in a higher density of dislocations in test steel, leading to maximum yield strength (1294 MPa) and ultimate tensile strength (2266 MPa). Compared to conventional process, this compact process significantly improves the mechanical properties of the hot formed steels while simplifying the production. 展开更多
关键词 microstructure characterization Hot formed steel Direct quenching Austenite grain refinement Dislocation strengthening
原文传递
Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing
13
作者 Jian Zang Jianrong Liu +4 位作者 Qingjiang Wang Haibing Tan Bohua Zhang Xiaolin Dong Zibo Zhao 《Acta Metallurgica Sinica(English Letters)》 2025年第1期107-120,共14页
The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prep... The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prepared through distinct pretreatments,were systematically analyzed.Morphological analysis reveals that while both thickαplatelets and coarse priorβgrains impede the spheroidization of lamellar structures,the influence of the former is more pronounced.Variations inαplatelet thickness priorβgrain size exhibit limited impact on the macro-texture type after deformation and annealing.The proportion of low-angle interfaces between the c-axis of the primaryαphase and the<110>direction of the priorβgrains was elevated in rods with thicker platelets compared to thinner ones. 展开更多
关键词 Ti65 alloy Thermomechanical processing αplatelet thickness Priorβgrain size microstructure evolution TEXTURE
原文传递
A multi-scale framework for life reduction assessment of turbine blade caused by microstructural degradation
14
作者 Xiaoguang YANG Menglei WANG +2 位作者 Duoqi SHI Zhenlei LI Yongsheng FAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期186-200,共15页
The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a m... The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a multi-scale framework to estimate the life reduction of turbine blades,which combines a microstructural degradation model,a two-phase constitutive model,and a microstructure-dependent fatigue and creep life reduction model.The framework with multi-scale models is validated by a Single Crystal(SC)Ni-based superalloy at the microstructural length-scale and is then applied to calculate the microstructural degradation and the fatigue and creep life reduction of turbine blades under two specific service conditions.The simulation results and quantitative analysis show that the microstructural degradation and fatigue and creep life reduction of the turbine blade are heavily influenced by the variations in the proportion of the intermediate state,namely,the maximum rotor speed status,in the two specific service conditions.The intermediate state accelerates the microstructural degradation and leads to a reduction of the life,especially the effective fatigue life reserve due to the higher temperature and rotational speed than that of the 93%maximum rotor speed status marked as the reference state.The proposed multi-scale framework provides a capable approach to analyze the reduction of the fatigue and creep life for turbine blade induced by microstructural degradation,which can assist to determine a reasonable Time Between Overhaul(TBO)of the engine. 展开更多
关键词 CREEP FATIGUE Life reduction microstructural degradation multi-scale modeling Turbine blades
原文传递
Mechanically robust high magnetic performance Sm_(2)Co_(17)sintered magnets via microstructure modification with Al_(2)O_(3)doping
15
作者 Lei Wang Qiangfeng Li +8 位作者 Chao Wang Meng Zheng Ze Duan Yifei Bi Youhao Liu Minggang Zhu Yikun Fang Xiaofei Yi Wei Li 《Journal of Materials Science & Technology》 2025年第9期148-157,共10页
In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage... In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets. 展开更多
关键词 Sm_(2)Co_(17)-type permanent magnets Al_(2)O_(3)powder grain refinement microstructure Flexural strength
原文传递
Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular 被引量:1
16
作者 Hui-Juan Guo Ying-Hua Liu +2 位作者 Yi-Nao Su Quan-Li Zhang Guo-Dong Zhan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期336-348,共13页
We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack... We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology. 展开更多
关键词 solid expandable tubular(SET) material microstructure damage multi-scale elastoplastic model virtual failure
原文传递
Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
17
作者 Zheng Cao Qing-Qiao Fu +7 位作者 Hui Gu Zhen Tian Xinba Yaer Juan-Juan Xing Lei Miao Xiao-Huan Wang Hui-Min Liu Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期469-475,共7页
Strontium titanate(SrTiO_(3))is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators.To simultaneously achieve a low thermal conductivity and hi... Strontium titanate(SrTiO_(3))is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators.To simultaneously achieve a low thermal conductivity and high electrical conductivity,polycrystalline SrTiO_(3)with a multi-scale architecture was designed by the co-doping with lanthanum,cerium,and niobium.High-quality nano-powders were synthesized via a hydrothermal method.Nano-inclusions and a nano/micro-sized second phase precipitated during sintering to form mosaic crystal-like and epitaxial-like structures,which decreased the thermal conductivity.Substituting trivalent Ce and/or La with divalent Sr and substituting pentavalent Nb with tetravalent Ti enhanced the electrical conductivity without decreasing the Seebeck coefficient.By optimizing the dopant type and ratio,a low thermal conductivity of 2.77 W·m^(-1)·K^(-1)and high PF of 1.1 mW·m^(-1)·K^(-2)at 1000 K were obtained in the sample co-doped with 5-mol%La,5-mol%Ce,and 5-mol%Nb,which induced a large ZT of 0.38 at 1000 K. 展开更多
关键词 strontium titanate multiple-doping multi-scale microstructure nano-inclusions
原文传递
Production of Mg-Al-Zn magnesium alloy sheets with ultrafine-grain microstructure by accumulative roll-bonding 被引量:11
18
作者 詹美燕 张卫文 张大童 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期991-997,共7页
Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of... Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB. 展开更多
关键词 Mg-Al-Zn magnesium alloys microstructure grain refinement dynamic recrystallization MISORIENTATION
在线阅读 下载PDF
Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process 被引量:6
19
作者 陈永楠 魏建锋 +1 位作者 赵永庆 郑晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1018-1022,共5页
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr... Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution. 展开更多
关键词 titanium alloy Ti14 alloy SEMI-SOLID microstructure grain growth index
在线阅读 下载PDF
Effects of grain refining and modification on mechanical properties and microstructures of Al-7.5Si-4Cu cast alloy 被引量:3
20
作者 刘光磊 司乃潮 +1 位作者 孙少纯 吴勤方 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期946-953,共8页
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a... Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses. 展开更多
关键词 Al-7.5Si-4Cu cast alloy grain refinement modification treatment mechanical properties microstructureS
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部