期刊文献+
共找到22,695篇文章
< 1 2 250 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
2
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
AMSFuse:Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification
3
作者 Chengzhang Zhu Ahmed Alasri +5 位作者 Tao Xu Yalong Xiao Abdulrahman Noman Raeed Alsabri Xuanchu Duan Monir Abdullah 《Computers, Materials & Continua》 2025年第3期5153-5167,共15页
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p... Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods. 展开更多
关键词 Diabetic retinopathy multi-scale feature fusion global features local features integrated attention mechanism retinal images
暂未订购
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
4
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
5
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
MSFResNet:A ResNeXt50 model based on multi-scale feature fusion for wild mushroom identification
6
作者 YANG Yang JU Tao +1 位作者 YANG Wenjie ZHAO Yuyang 《Journal of Measurement Science and Instrumentation》 2025年第1期66-74,共9页
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo... To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification. 展开更多
关键词 multi-scale feature fusion attention mechanism ResNeXt50 wild mushroom identification deep learning
在线阅读 下载PDF
A Method for Automatic Feature Points Extraction of Pelvic Surface Based on PointMLP_RegNet
7
作者 Wei Kou Rui Zhou +5 位作者 Hongmiao Zhang Jianwen Cheng Chi Zhu Shaolong Kuang Lihai Zhang Lining Sun 《CAAI Transactions on Intelligence Technology》 2025年第3期716-727,共12页
The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration.This process involves extracting anatomical feature points from pre-operative 3D image... The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration.This process involves extracting anatomical feature points from pre-operative 3D images which can be challenging because of the complex and variable structure of the pelvis.PointMLP_RegNet,a modified PointMLP,was introduced to address this issue.It retains the feature extraction module of PointMLP but replaces the classification layer with a regression layer to predict the coordinates of feature points instead of conducting regular classification.A flowchart for an automatic feature points extraction method was presented,and a series of experiments was conducted on a clinical pelvic dataset to confirm the accuracy and effectiveness of the method.PointMLP_RegNet extracted feature points more accurately,with 8 out of 10 points showing less than 4 mm errors and the remaining two less than 5 mm.Compared to PointNettt and PointNet,it exhibited higher accuracy,robustness and space efficiency.The proposed method will improve the accuracy of anatomical feature points extraction,enhance intra-operative registration precision and facilitate the widespread clinical application of robot-assisted pelvic fracture reduction. 展开更多
关键词 automatic feature points extraction feature points intra-operative registration PointMLP_RegNet robot-assisted pelvic fracture reduction surgery
在线阅读 下载PDF
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
8
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
9
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
Hybrid HRNet-Swin Transformer:Multi-Scale Feature Fusion for Aerial Segmentation and Classification
10
作者 Asaad Algarni Aysha Naseer +3 位作者 Mohammed Alshehri Yahya AlQahtani Abdulmonem Alshahrani Jeongmin Park 《Computers, Materials & Continua》 2025年第10期1981-1998,共18页
Remote sensing plays a pivotal role in environmental monitoring,disaster relief,and urban planning,where accurate scene classification of aerial images is essential.However,conventional convolutional neural networks(C... Remote sensing plays a pivotal role in environmental monitoring,disaster relief,and urban planning,where accurate scene classification of aerial images is essential.However,conventional convolutional neural networks(CNNs)struggle with long-range dependencies and preserving high-resolution features,limiting their effectiveness in complex aerial image analysis.To address these challenges,we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction.This hybrid architecture ensures robust multi-scale feature fusion,capturing fine-grained details and broader contextual relationships in aerial imagery.Our methodology begins with preprocessing steps,including normalization,histogram equalization,and noise reduction,to enhance input data quality.The HRNet-W48 backbone maintains high-resolution feature maps throughout the network,enabling precise segmentation,while the Swin Transformer leverages hierarchical self-attention to model long-range dependencies efficiently.By integrating these components,our model achieves superior performance in segmentation and classification tasks compared to traditional CNNs and standalone transformer models.We evaluate our approach on two benchmark datasets:UC Merced and WHU-RS19.Experimental results demonstrate that the proposed hybrid model outperforms existing methods,achieving state-of-the-art accuracy while maintaining computational efficiency.Specifically,it excels in preserving fine spatial details and contextual understanding,critical for applications like land-use classification and disaster assessment. 展开更多
关键词 Remote sensing computer vision aerial imagery scene classification feature extraction TRANSFORMER
在线阅读 下载PDF
Dialogue Relation Extraction Enhanced with Trigger:A Multi-Feature Filtering and Fusion Model
11
作者 Haitao Wang Yuanzhao Guo +1 位作者 Xiaotong Han Yuan Tian 《Computers, Materials & Continua》 2025年第4期137-155,共19页
Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low informatio... Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts. 展开更多
关键词 Dialogue relation extraction feature filtering chain-of-thought
在线阅读 下载PDF
AI-Driven Malware Detection with VGG Feature Extraction and Artificial Rabbits Optimized Random Forest Model
12
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Wadee Alhalabi Varsha Arya Shavi Bansal Ching-Hsien Hsu 《Computers, Materials & Continua》 2025年第9期4755-4772,共18页
Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support v... Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective. 展开更多
关键词 Malware detection VGG feature extraction artificial rabbits OPTIMIZATION random forest model
在线阅读 下载PDF
A Two-Stage Feature Extraction Approach for Green Energy Consumers in Retail Electricity Markets Using Clustering and TF–IDF Algorithms
13
作者 Wei Yang Weicong Tan +6 位作者 Zhijian Zeng Ren Li Jie Qin Yuting Xie Yongjun Zhang Runting Cheng Dongliang Xiao 《Energy Engineering》 2025年第5期1697-1713,共17页
The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for th... The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly. 展开更多
关键词 Green energy consumer feature extraction knowledge graph retail electricity market
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
14
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
15
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Contour Detection Algorithm forαPhase Structure of TB6 Titanium Alloy fused with Multi-Scale Fretting Features
16
作者 Fei He Yan Dou +1 位作者 Xiaoying Zhang Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期499-509,共11页
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate... Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy. 展开更多
关键词 TB6 titanium alloyαphase multi-scale fretting features Contour detection
在线阅读 下载PDF
Few-shot image recognition based on multi-scale features prototypical network
17
作者 LIU Jiatong DUAN Yong 《High Technology Letters》 EI CAS 2024年第3期280-289,共10页
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i... In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively. 展开更多
关键词 few-shot learning multi-scale feature prototypical network channel attention label-smoothing
在线阅读 下载PDF
Application of multi-scale feature extraction to surface defect classification of hot-rolled steels 被引量:9
18
作者 Ke Xu Yong-hao Ai Xiu-yong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期37-41,共5页
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer... Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%. 展开更多
关键词 hot rolling strip metal surface defects CLASSIFICATION feature extraction
在线阅读 下载PDF
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
19
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 multi-scale Principal Component Analysis Discrete WAVELET TRANSFORM featurE extraction Signal CLASSIFICATION Empirical CLASSIFICATION
在线阅读 下载PDF
WMA:A Multi-Scale Self-Attention Feature Extraction Network Based on Weight Sharing for VQA 被引量:1
20
作者 Yue Li Jin Liu Shengjie Shang 《Journal on Big Data》 2021年第3期111-118,共8页
Visual Question Answering(VQA)has attracted extensive research focus and has become a hot topic in deep learning recently.The development of computer vision and natural language processing technology has contributed t... Visual Question Answering(VQA)has attracted extensive research focus and has become a hot topic in deep learning recently.The development of computer vision and natural language processing technology has contributed to the advancement of this research area.Key solutions to improve the performance of VQA system exist in feature extraction,multimodal fusion,and answer prediction modules.There exists an unsolved issue in the popular VQA image feature extraction module that extracts the fine-grained features from objects of different scale difficultly.In this paper,a novel feature extraction network that combines multi-scale convolution and self-attention branches to solve the above problem is designed.Our approach achieves the state-of-the-art performance of a single model on Pascal VOC 2012,VQA 1.0,and VQA 2.0 datasets. 展开更多
关键词 VQA feature extraction self-attention FINE-GRAINED
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部