A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p...Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods.展开更多
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an...Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.展开更多
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of...With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection.展开更多
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo...To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.展开更多
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE...Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively.展开更多
Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insigh...Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.展开更多
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio...Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO w...A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f...Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.展开更多
This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI prog...This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI program in order to study the dynamic bending features of fabrics in a specific air flow filed. The computational fluid dynamics (CFD) model for flow and the finite element model (FEM) for fabric was set up to constitute an FSI model in which the geometric nonlinear behavior and the dynamic stress-strain variation of the relatively soft fabric material were taken into account. Several FSI cases with different time-dependent wind load and the model frequency analysis for fabric were carried out. The dynamic response of fabric and the distribution of fluid variables were investigated. The results of numerical simulation and experiments fit quite well. Hence, this work contributes to the research of modeling the dynamic bending behavior of fabrics in air field.展开更多
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate...Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy.展开更多
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da...With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.展开更多
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i...In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.展开更多
In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,t...In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,the design and implementation of recommendation models using information related to user behavior sequences is an important direction of current research in recommendation systems,and models calculate the likelihood of users clicking on target items based on their behavior sequence information.In order to explore the relationship between features,this paper improves and optimizes on the basis of deep interest network(DIN)proposed by Ali’s team.Based on the user behavioral sequences information,the attentional factorization machine(AFM)is integrated to obtain richer and more accurate behavioral sequence information.In addition,this paper designs a new way of calculating attention weights,which uses the relationship between the cosine similarity of any two vectors and the absolute value of their modal length difference to measure their relevance degree.Thus,a novel deep learning CTR prediction mode is proposed,that is,the CTR prediction network based on user behavior sequence and feature interactions deep interest and machines network(DIMN).We conduct extensive comparison experiments on three public datasets and one private music dataset,which are more recognized in the industry,and the results show that the DIMN obtains a better performance compared with the classical CTR prediction model.展开更多
Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. Th...Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by the National Natural Science Foundation of China(No.62376287)the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Natural Science Foundation of Hunan Province(Nos.2022JJ30762,2023JJ70016).
文摘Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers 2024TIAD-CYKJCXX0121,2024NSCQ-LZX0135Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology graduate education high-quality development project,grant number gzlsz202401the Chongqing University of Technology-Chongqing LINGLUE Technology Co.,Ltd.,Electronic Information(Artificial Intelligence)graduate joint training basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.,Computer Technology graduate joint training base.
文摘Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.
基金supported by Communication University of China(HG23035)partly supported by the Fundamental Research Funds for the Central Universities(CUC230A013).
文摘With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection.
基金supported by National Natural Science Foundation of China(No.61862037)Lanzhou Jiaotong University Tianyou Innovation Team Project(No.TY202002)。
文摘To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.
基金supported by the National Key Research and Development Program of China(2023YFB3307800)National Natural Science Foundation of China(62394343,62373155)+2 种基金Major Science and Technology Project of Xinjiang(No.2022A01006-4)State Key Laboratory of Industrial Control Technology,China(Grant No.ICT2024A26)Fundamental Research Funds for the Central Universities.
文摘Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively.
基金supported by the Natural Science Foundation of Wenzhou University of Technology,China(Grant No.:ky202211).
文摘Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.
基金funded by the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia through research group No.(RG-NBU-2022-1234).
文摘Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
基金This study was supported by the National Key R&D Program of China through Grant Nos.2018YFC1505901 and 2018YFA0606203the National Nature Science Foundation of China through Grant Nos.41922035,41575062,41520104008+1 种基金Key Research Program of Frontier Sciences of CAS through Grant No.QYZDB-SSW-DQC017the Youth Innovation Promotion Association,Chinese Academy of Sciences.The first author acknowledges the support from the China Scholarship Council(CSC)Grant No.201904910516.
文摘A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.
基金National Natural Science Foundations of China(No.50803010,No.60904056)
文摘This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI program in order to study the dynamic bending features of fabrics in a specific air flow filed. The computational fluid dynamics (CFD) model for flow and the finite element model (FEM) for fabric was set up to constitute an FSI model in which the geometric nonlinear behavior and the dynamic stress-strain variation of the relatively soft fabric material were taken into account. Several FSI cases with different time-dependent wind load and the model frequency analysis for fabric were carried out. The dynamic response of fabric and the distribution of fluid variables were investigated. The results of numerical simulation and experiments fit quite well. Hence, this work contributes to the research of modeling the dynamic bending behavior of fabrics in air field.
基金Supported by Hebei Provincial Key Laboratory for Software Engineering(Grant No.22567637H)the"Rail Vehicle Application Engineering"National International Science and Technology Cooperation Base Open Project Fund(Grant No.BMRV21KF09).
文摘Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy.
基金supported by the National Key Research and Development Project(No.2020YFC1512000)the General Projects of Key R&D Programs in Shaanxi Province(No.2020GY-060)Xi’an Science&Technology Project(No.2020KJRC 0126)。
文摘With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.
基金the Scientific Research Foundation of Liaoning Provincial Department of Education(No.LJKZ0139)the Program for Liaoning Excellent Talents in University(No.LR15045).
文摘In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.
文摘In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,the design and implementation of recommendation models using information related to user behavior sequences is an important direction of current research in recommendation systems,and models calculate the likelihood of users clicking on target items based on their behavior sequence information.In order to explore the relationship between features,this paper improves and optimizes on the basis of deep interest network(DIN)proposed by Ali’s team.Based on the user behavioral sequences information,the attentional factorization machine(AFM)is integrated to obtain richer and more accurate behavioral sequence information.In addition,this paper designs a new way of calculating attention weights,which uses the relationship between the cosine similarity of any two vectors and the absolute value of their modal length difference to measure their relevance degree.Thus,a novel deep learning CTR prediction mode is proposed,that is,the CTR prediction network based on user behavior sequence and feature interactions deep interest and machines network(DIMN).We conduct extensive comparison experiments on three public datasets and one private music dataset,which are more recognized in the industry,and the results show that the DIMN obtains a better performance compared with the classical CTR prediction model.
文摘Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.