Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex ...Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie...We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.展开更多
Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CN...Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CNC) de-noising method. Based on DCT, a novel method for the fault feature extraction of hydraulic pump is analyzed. The vibration signal of pump is de-noised with CNC de-noising method, and the fault feature is extracted by performing Hilbert-Huang transform(HHT) to the output signal. The analysis results of the simulation signal and the actual one demonstrate that the proposed CNC de-noising method and the fault feature extraction method have more superior ability than the traditional ones.展开更多
The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the ana...Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the analysis and interpretation of hyperspectral images a challenge.Feature extraction is a very important step for hyperspectral image processing.Feature extraction methods aim at reducing the dimension of data,while preserving as much information as possible.Particularly,nonlinear feature extraction methods (e.g.kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing,due to their good preservation of high-order structures of the original data.However,conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction,and this leads to poor performances for post-applications.This paper proposes a novel nonlinear feature extraction method for hyperspectral images.Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window),the proposed method explores the use of image segmentation.The approach benefits both noise fraction estimation and information preservation,and enables a significant improvement for classification.Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method.Compared to conventional KMNF,the improvements of the method on two hyperspectral image classification are 8 and 11%.This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic informa...We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic information for applications. Facing this challenge, a new tactic, Human-Computer Collaborative (HCC) tactic, and a corresponding new method, Operator-Object Directed (OOD) method, are proposed for the design of a system for feature extraction from large scale aerial images. We hold that in almost all technical complex systems, full automation will be neither technically feasible nor socially acceptable. The system should be designed to optimize through the cooperative operation with two agents in the system: the hurtan and the computer.展开更多
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having hi...In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having high computational costs.To address these issues,we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs,proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer.In the Convolution Neural Network(CNN)branch,a cross-scale feature integration convolution module is designed,incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects.In the Vision Transformer(ViT)branch,an efficient multi-head self-attention module is developed,reducing unnecessary computation through spatial compression and feature partitioning,thereby improving overall network efficiency.Finally,a multi-feature coupling module is introduced to complement the features generated by both branches.This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features.Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9%and 3.6%,respectively,over the TransCAM algorithm.Besides,the improved model demonstrates a 1.3%increase of the mean Intersections over Union on the COCO 2014 datasets.Additionally,the number of parameters and the floating-point operations are reduced by 16.2%and 12.9%.However,the proposed method still has limitations of poor performance when dealing with complex scenarios.There is a need for further enhancing the performance of this method to address this issue.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures str...In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone.展开更多
Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead t...Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead to unsatisfactory artifacts.We found that in real-world VSR training,the use of unknown and complex degradation can better simulate the degradation process in the real world.Methods Based on this,we propose the RealFuVSR model,which simulates real-world degradation and mitigates artifacts caused by the VSR.Specifically,we propose a multiscale feature extraction module(MSF)module that extracts and fuses features from multiple scales,thereby facilitating the elimination of hidden state artifacts.To improve the accuracy of the hidden state alignment information,RealFuVSR uses an advanced optical flow-guided deformable convolution.Moreover,a cascaded residual upsampling module was used to eliminate noise caused by the upsampling process.Results The experiment demonstrates that RealFuVSR model can not only recover high-quality videos but also outperforms the state-of-the-art RealBasicVSR and RealESRGAN models.展开更多
To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent im...To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.展开更多
视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参...视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。展开更多
文摘Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
基金supported by the National Natural Science Foundation of China (Nos.61806107 and 61702135)。
文摘We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.
基金the National Natural Science Foundation of China(No.51275524)the General Armaments Department Equipment Support Research Project
文摘Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CNC) de-noising method. Based on DCT, a novel method for the fault feature extraction of hydraulic pump is analyzed. The vibration signal of pump is de-noised with CNC de-noising method, and the fault feature is extracted by performing Hilbert-Huang transform(HHT) to the output signal. The analysis results of the simulation signal and the actual one demonstrate that the proposed CNC de-noising method and the fault feature extraction method have more superior ability than the traditional ones.
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金the National Natural Science Foundation of China [Grant Number 41722108],(Grant Number 91638201)%FWO project:data fusion for image analysis in remote sensing(Grant Number G037115N)
文摘Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the analysis and interpretation of hyperspectral images a challenge.Feature extraction is a very important step for hyperspectral image processing.Feature extraction methods aim at reducing the dimension of data,while preserving as much information as possible.Particularly,nonlinear feature extraction methods (e.g.kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing,due to their good preservation of high-order structures of the original data.However,conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction,and this leads to poor performances for post-applications.This paper proposes a novel nonlinear feature extraction method for hyperspectral images.Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window),the proposed method explores the use of image segmentation.The approach benefits both noise fraction estimation and information preservation,and enables a significant improvement for classification.Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method.Compared to conventional KMNF,the improvements of the method on two hyperspectral image classification are 8 and 11%.This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic information for applications. Facing this challenge, a new tactic, Human-Computer Collaborative (HCC) tactic, and a corresponding new method, Operator-Object Directed (OOD) method, are proposed for the design of a system for feature extraction from large scale aerial images. We hold that in almost all technical complex systems, full automation will be neither technically feasible nor socially acceptable. The system should be designed to optimize through the cooperative operation with two agents in the system: the hurtan and the computer.
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
文摘In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having high computational costs.To address these issues,we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs,proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer.In the Convolution Neural Network(CNN)branch,a cross-scale feature integration convolution module is designed,incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects.In the Vision Transformer(ViT)branch,an efficient multi-head self-attention module is developed,reducing unnecessary computation through spatial compression and feature partitioning,thereby improving overall network efficiency.Finally,a multi-feature coupling module is introduced to complement the features generated by both branches.This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features.Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9%and 3.6%,respectively,over the TransCAM algorithm.Besides,the improved model demonstrates a 1.3%increase of the mean Intersections over Union on the COCO 2014 datasets.Additionally,the number of parameters and the floating-point operations are reduced by 16.2%and 12.9%.However,the proposed method still has limitations of poor performance when dealing with complex scenarios.There is a need for further enhancing the performance of this method to address this issue.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金supported by the Chinese Earthquake Administration,Institute of Seismology Foundation(IS201326126)Chinese earthquake scientific array exploration northern section of North South Seismic Belt gravity profile Foundation(201308011)
文摘In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone.
基金Supported by Open Project of the Ministry of Industry and Information Technology Key Laboratory of Performance and Reliability Testing and Evaluation for Basic Software and Hardware。
文摘Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead to unsatisfactory artifacts.We found that in real-world VSR training,the use of unknown and complex degradation can better simulate the degradation process in the real world.Methods Based on this,we propose the RealFuVSR model,which simulates real-world degradation and mitigates artifacts caused by the VSR.Specifically,we propose a multiscale feature extraction module(MSF)module that extracts and fuses features from multiple scales,thereby facilitating the elimination of hidden state artifacts.To improve the accuracy of the hidden state alignment information,RealFuVSR uses an advanced optical flow-guided deformable convolution.Moreover,a cascaded residual upsampling module was used to eliminate noise caused by the upsampling process.Results The experiment demonstrates that RealFuVSR model can not only recover high-quality videos but also outperforms the state-of-the-art RealBasicVSR and RealESRGAN models.
基金Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704c), the National Science Technology Support Program of China (No. 2013BAH03B01), and the Zhejiang Provincial Natural Science Foundation of China (No. LY14F020028)
文摘To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.
文摘视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。