A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The cont...A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.展开更多
The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity...The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity(i.e.,dispersion) and elastic anisotropy parameters.The relevant knowledge is of great importance for geofluid discrimination and hydrocarbon exploration in the porous shale reservoirs.We derive the wave equations for a periodic layered transversely isotropy medium with a vertical axis of symmetry(VTI) concurrently with the annular cracks(PLPC medium) based on the periodic-layered model and anisotropic Biot's theory,which simultaneously incorporate the effects of microscopic squirt fluid flow,mesoscopic interlayer fluid flow and macroscopic global fluid flow.Notably,the microscopic squirt shorten fluid flow emerges between the annular-shaped cracks and stiff pores,which generates one attenuation peak.Specifically,we first establish the stress-strain relationship and pore fluid pressure in a PLPC medium,and then use them to derive the wave equations by means of the Newton's second law.The plane analysis is implemented on the wave equations to yield the analytic solutions for phase velocities and attenuation factors of four waves,namely,fast P-wave,slow P-wave,SV-wave and SH-wave,and the anisotropy parameters can be therefore computed.Simulation results show that P-wave velocity have three attenuation peaks throughout the full frequency band,which respectively correspond to the influences of interlayer flow,the squirt flow and the Biot flow.Through the results of seismic velocity dispersion and attenuation at different incident angles,we find that the WIFF mechanism also has a significant impact on the dispersion characteristics of elastic anisotropy parameters within the low-mid frequency band.Moreover,it is shown that several poroelastic parameters,such as layer thickness ratio,crack aspect ratio and crack density have notable influence on seismic dispersion and attenuation.We compare the proposed modeled velocities with that given by the existing theory to confirm its validity.Our formulas and result can provide a better understanding of wave propagation in PLPC medium by considering the unified impacts of micro-,meso-and macro-scale WIFF mechanisms,which potentially lays a theoretical basis of rock physics for seismic interpretation.展开更多
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof...Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications.展开更多
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promi...Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.展开更多
Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapie...Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
The application of ecosystem services(ES)theories in land consolidation is a confusing issue that has long plagued scholars and government officials.As the upgraded version of traditional land consolidation,comprehens...The application of ecosystem services(ES)theories in land consolidation is a confusing issue that has long plagued scholars and government officials.As the upgraded version of traditional land consolidation,comprehensive land consolidation(CLC)emphasizes ecological benefits,but it does not achieve the expected effect during the pilot phase.This study first proposed a theoretical analysis framework based on ES knowledge to answer the three key questions of why,where,and how to implement CLC better.Taking mountainous counties as the study area,we found that ES trade-offs/synergies,bundles,and drivers were significantly affected by scale effects.ES knowledge can play a crucial role in designing multi-scale CLC strategies regarding the objective,zoning,intensity,and mode.Specifically,mitigating the significant trade-offs between recreational opportunities,food production,and other ES is the top priority of CLC.Land consolidation zoning based on the ES bundles analysis is more rational and can provide the scientific premise for designing locally adapted CLC measures.Land consolidation can be classified into high-intensity direct intervention and low-intensity indirect intervention modes,based on the major drivers of ES.These findings help narrow the gap between ES and CLC practices.展开更多
BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity va...BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radi...β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radiation resistance,and excellent chemical and thermal stabilities.Here,a self-powered photodetector(PD)based on an Ag/β-Ga_(2)O_(3) Schottky heterojunction was designed and fabricated.Through a subtle design of electrodes,the pyro-phototronic effect was discovered,which can be coupled to the common photovoltaic effect and further enhance the performance of the PD.Compared to traditional Ga_(2)O_(3)-based PD,the as-used PD exhibited a self-driving property and a broadband response beyond the bandgap lim-itations,ranging from 200 nm(deep UV)to 980 nm(infrared).Moreover,the photoresponse time was greatly shrunk owing to the coupling effect.Under laser irradiation,with a wavelength of 450 nm and a power density of 8 mW cm-2,the photocurrent could be improved by around 41 times compared with the sole photovoltaic effect.Besides,the performances of the Schottky PD were enhanced at both high and low temperatures.The device also possessed long-term working stability.This paper not only re-veals basic physics lying in the 4th generation semiconductor Ga_(2)O_(3) but also sheds light on the multi-encryption transmission of light information using this PD.展开更多
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c...The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.展开更多
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB228002)
文摘A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.
基金sponsorship of the National Natural Science Foundation of China (U24B2020,42174139)。
文摘The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity(i.e.,dispersion) and elastic anisotropy parameters.The relevant knowledge is of great importance for geofluid discrimination and hydrocarbon exploration in the porous shale reservoirs.We derive the wave equations for a periodic layered transversely isotropy medium with a vertical axis of symmetry(VTI) concurrently with the annular cracks(PLPC medium) based on the periodic-layered model and anisotropic Biot's theory,which simultaneously incorporate the effects of microscopic squirt fluid flow,mesoscopic interlayer fluid flow and macroscopic global fluid flow.Notably,the microscopic squirt shorten fluid flow emerges between the annular-shaped cracks and stiff pores,which generates one attenuation peak.Specifically,we first establish the stress-strain relationship and pore fluid pressure in a PLPC medium,and then use them to derive the wave equations by means of the Newton's second law.The plane analysis is implemented on the wave equations to yield the analytic solutions for phase velocities and attenuation factors of four waves,namely,fast P-wave,slow P-wave,SV-wave and SH-wave,and the anisotropy parameters can be therefore computed.Simulation results show that P-wave velocity have three attenuation peaks throughout the full frequency band,which respectively correspond to the influences of interlayer flow,the squirt flow and the Biot flow.Through the results of seismic velocity dispersion and attenuation at different incident angles,we find that the WIFF mechanism also has a significant impact on the dispersion characteristics of elastic anisotropy parameters within the low-mid frequency band.Moreover,it is shown that several poroelastic parameters,such as layer thickness ratio,crack aspect ratio and crack density have notable influence on seismic dispersion and attenuation.We compare the proposed modeled velocities with that given by the existing theory to confirm its validity.Our formulas and result can provide a better understanding of wave propagation in PLPC medium by considering the unified impacts of micro-,meso-and macro-scale WIFF mechanisms,which potentially lays a theoretical basis of rock physics for seismic interpretation.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(52274182)supported by the National Natural Science Foundation of China+1 种基金Project(2021zzts0274)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CX20210295)supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China。
文摘Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications.
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.
基金Supported by the National Natural Science Foundation of China,No.82072537the General Project of Hunan Natural Science Foundation,No.2022JJ30412 and No.2021JJ30464.
文摘Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.
文摘Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金National Natural Science Foundation of China,No.42171255,No.41971216。
文摘The application of ecosystem services(ES)theories in land consolidation is a confusing issue that has long plagued scholars and government officials.As the upgraded version of traditional land consolidation,comprehensive land consolidation(CLC)emphasizes ecological benefits,but it does not achieve the expected effect during the pilot phase.This study first proposed a theoretical analysis framework based on ES knowledge to answer the three key questions of why,where,and how to implement CLC better.Taking mountainous counties as the study area,we found that ES trade-offs/synergies,bundles,and drivers were significantly affected by scale effects.ES knowledge can play a crucial role in designing multi-scale CLC strategies regarding the objective,zoning,intensity,and mode.Specifically,mitigating the significant trade-offs between recreational opportunities,food production,and other ES is the top priority of CLC.Land consolidation zoning based on the ES bundles analysis is more rational and can provide the scientific premise for designing locally adapted CLC measures.Land consolidation can be classified into high-intensity direct intervention and low-intensity indirect intervention modes,based on the major drivers of ES.These findings help narrow the gap between ES and CLC practices.
基金Supported by Science and Technology Innovation 2030-Major Projects,No.2021ZD0202000National Key Research and Development Program of China,No.2019YFA0706200+2 种基金National Natural Science Foundation of China,No.82371535Science and Technology Innovation Program of Hunan Province,No.2023RC3083Fundamental Research Funds for the Central Universities of Central South University,No.2023ZZTS0838.
文摘BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52192610 and 52192613)the National Key R&D Project from the Minister of Science and Technology(No.2021YFA1201601)the CAS-TWAS President’s Fellow-ship(A.B).
文摘β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radiation resistance,and excellent chemical and thermal stabilities.Here,a self-powered photodetector(PD)based on an Ag/β-Ga_(2)O_(3) Schottky heterojunction was designed and fabricated.Through a subtle design of electrodes,the pyro-phototronic effect was discovered,which can be coupled to the common photovoltaic effect and further enhance the performance of the PD.Compared to traditional Ga_(2)O_(3)-based PD,the as-used PD exhibited a self-driving property and a broadband response beyond the bandgap lim-itations,ranging from 200 nm(deep UV)to 980 nm(infrared).Moreover,the photoresponse time was greatly shrunk owing to the coupling effect.Under laser irradiation,with a wavelength of 450 nm and a power density of 8 mW cm-2,the photocurrent could be improved by around 41 times compared with the sole photovoltaic effect.Besides,the performances of the Schottky PD were enhanced at both high and low temperatures.The device also possessed long-term working stability.This paper not only re-veals basic physics lying in the 4th generation semiconductor Ga_(2)O_(3) but also sheds light on the multi-encryption transmission of light information using this PD.
文摘The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.