期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
1
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
2
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
GT-A^(2)T:Graph Tensor Alliance Attention Network
3
作者 Ling Wang Kechen Liu Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2165-2167,共3页
Dear Editor,This letter proposes the graph tensor alliance attention network(GT-A^(2)T)to represent a dynamic graph(DG)precisely.Its main idea includes 1)Establishing a unified spatio-temporal message propagation fram... Dear Editor,This letter proposes the graph tensor alliance attention network(GT-A^(2)T)to represent a dynamic graph(DG)precisely.Its main idea includes 1)Establishing a unified spatio-temporal message propagation framework on a DG via the tensor product for capturing the complex cohesive spatio-temporal interdependencies precisely and 2)Acquiring the alliance attention scores by node features and favorable high-order structural correlations. 展开更多
关键词 spatio temporal message propagation alliance attention scores high order structural correlations graph tensor alliance attention network gt t node features graph tensor dynamic graph alliance attention
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
4
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
Enhancing human behavior recognition with dynamic graph convolutional networks and multi-scale position attention
5
作者 Peng Huang Hongmei Jiang +1 位作者 Shuxian Wang Jiandeng Huang 《International Journal of Intelligent Computing and Cybernetics》 2025年第1期236-253,共18页
Purpose-Human behavior recognition poses a pivotal challenge in intelligent computing and cybernetics,significantly impacting engineering and management systems.With the rapid advancement of autonomous systems and int... Purpose-Human behavior recognition poses a pivotal challenge in intelligent computing and cybernetics,significantly impacting engineering and management systems.With the rapid advancement of autonomous systems and intelligent manufacturing,there is an increasing demand for precise and efficient human behavior recognition technologies.However,traditional methods often suffer from insufficient accuracy and limited generalization ability when dealing with complex and diverse human actions.Therefore,this study aims to enhance the precision of human behavior recognition by proposing an innovative framework,dynamic graph convolutional networks with multi-scale position attention(DGCN-MPA)to sup.Design/methodology/approach-The primary applications are in autonomous systems and intelligent manufacturing.The main objective of this study is to develop an efficient human behavior recognition framework that leverages advanced techniques to improve the prediction and interpretation of human actions.This framework aims to address the shortcomings of existing methods in handling the complexity and variability of human actions,providing more reliable and precise solutions for practical applications.The proposed DGCN-MPA framework integrates the strengths of convolutional neural networks and graph-based models.It innovatively incorporates wavelet packet transform to extract time-frequency characteristics and a MPA module to enhance the representation of skeletal node positions.The core innovation lies in the fusion of dynamic graph convolution with hierarchical attention mechanisms,which selectively attend to relevant features and spatial relationships,adjusting their importance across scales to address the variability in human actions.Findings-To validate the effectiveness of the DGCN-MPA framework,rigorous evaluations were conducted on benchmark datasets such as NTU-RGBþD and Kinetics-Skeleton.The results demonstrate that the framework achieves an F1 score of 62.18%and an accuracy of 75.93%on NTU-RGBþD and an F1 score of 69.34%and an accuracy of 76.86%on Kinetics-Skeleton,outperforming existing models.These findings underscore the framework’s capability to capture complex behavior patterns with high precision.Originality/value-By introducing a dynamic graph convolutional approach combined with multi-scale position attention mechanisms,this study represents a significant advancement in human behavior recognition technologies.The innovative design and superior performance of the DGCN-MPA framework contribute to its potential for real-world applications,particularly in integrating behavior recognition into engineering and autonomous systems.In the future,this framework has the potential to further propel the development of intelligent computing,cybernetics and related fields. 展开更多
关键词 Big data analytics Decision support Human behavior recognition graph convolution neural network multi-scale attention dynamic graph convolution
在线阅读 下载PDF
Enhanced Attention-Driven Dynamic Graph Convolutional Network for Extracting Drug-Drug Interaction
6
作者 Xiechao Guo Dandan Song Fang Yang 《Big Data Mining and Analytics》 2025年第1期257-271,共15页
Automatically extracting Drug-Drug Interactions (DDIs) from text is a crucial and challenging task, particularly when multiple medications are taken concurrently. In this study, we propose a novel approach, called Enh... Automatically extracting Drug-Drug Interactions (DDIs) from text is a crucial and challenging task, particularly when multiple medications are taken concurrently. In this study, we propose a novel approach, called Enhanced Attention-driven Dynamic Graph Convolutional Network (E-ADGCN), for DDI extraction. Our model combines the Attention-driven Dynamic Graph Convolutional Network (ADGCN) with a feature fusion method and multi-task learning framework. The ADGCN effectively utilizes entity information and dependency tree information from biomedical texts to extract DDIs. The feature fusion method integrates User-Generated Content (UGC) and molecular information with drug entity information from text through dynamic routing. By leveraging external resources, our approach maximizes the auxiliary effect and improves the accuracy of DDI extraction. We evaluate the E-ADGCN model on the extended DDIExtraction2013 dataset and achieve an F1-score of 81.45%. This research contributes to the advancement of automated methods for extracting valuable drug interaction information from textual sources, facilitating improved medication management and patient safety. 展开更多
关键词 Drug-Drug interaction(DDI) attention mechanism graph Convolutional network(GCN) dynamic routing
原文传递
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
7
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 graph neural network dynamic interwell connectivity Production-injection splitting attention mechanism Multi-layer reservoir
原文传递
Graph-based method for human-object interactions detection 被引量:1
8
作者 XIA Li-min WU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期205-218,共14页
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d... Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods. 展开更多
关键词 human-object interactions visual relationship context information graph attention network
在线阅读 下载PDF
DGL-STFA:Predicting lithium-ion battery health with dynamic graph learning and spatial-temporal fusion attention 被引量:1
9
作者 Zheng Chen Quan Qian 《Energy and AI》 2025年第1期84-95,共12页
Accurately predicting the State of Health(SOH)of lithium-ion batteries is a critical challenge to ensure their reliability and safety in energy storage systems,such as electric vehicles and renewable energy grids.The ... Accurately predicting the State of Health(SOH)of lithium-ion batteries is a critical challenge to ensure their reliability and safety in energy storage systems,such as electric vehicles and renewable energy grids.The intricate battery degradation process is influenced by evolving spatial and temporal interactions among health indicators.Existing methods often fail to capture the dynamic interactions between health indicators over time,resulting in limited predictive accuracy.To address these challenges,we propose a novel framework,Dynamic Graph Learning with Spatial-Temporal Fusion Attention(DGL-STFA),which transforms health indicator series time-data into time-evolving graph representations.The framework employs multi-scale convolutional neural networks to capture diverse temporal patterns,a self-attention mechanism to construct dynamic adjacency matrices that adapt over time,and a temporal attention mechanism to identify and prioritize key moments that influence battery degradation.This combination enables DGL-STFA to effectively model both dynamic spatial relationships and long-term temporal dependencies,enhancing SOH prediction accuracy.Extensive experiments were conducted on the NASA and CALCE battery datasets,comparing this framework with traditional time-series prediction methods and other graph-based prediction methods.The results demonstrate that our framework significantly improves prediction accuracy,with a mean absolute error more than 30%lower than other methods.Further analysis demonstrated the robustness of DGL-STFA across various battery life stages,including early,mid,and end-of-life phases.These results highlight the capability of DGL-STFA to accurately predict SOH,addressing critical challenges in advancing battery health monitoring for energy storage applications. 展开更多
关键词 Lithium-ion battery State of health graph convolutional network dynamic graph learning Spatial-temporal attention
在线阅读 下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
10
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
在线阅读 下载PDF
Graph-based multi-agent reinforcement learning for collaborative search and tracking of multiple UAVs 被引量:2
11
作者 Bocheng ZHAO Mingying HUO +4 位作者 Zheng LI Wenyu FENG Ze YU Naiming QI Shaohai WANG 《Chinese Journal of Aeronautics》 2025年第3期109-123,共15页
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj... This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments. 展开更多
关键词 Unmanned aerial vehicle(UAV) Multi-agent reinforcement learning(MARL) graph attention network(GAT) Tracking dynamic and unknown environment
原文传递
基于图神经网络和注意力的点击率预测模型
12
作者 张峰 张涛 +2 位作者 花强 董春茹 朱杰 《河北大学学报(自然科学版)》 北大核心 2026年第1期93-103,共11页
为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制... 为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制,为每个特征分别学习一个细粒度的权重,并将这种细粒度的特征权重输入到向量级交互层和元素级交互层联合预测点击率.VBGA模型主要由向量级交互层和元素级交互层构成,其中向量级交互层采用有向图来构建向量级的特征交互,实现无重复的显式特征交互,在减少计算量的同时,还可以实现更高阶的特征交叉,以获得更准确的预测精度.此外,本文还提出了一种交叉网络用于构建元素级特征交互.在Criteo和Avazu数据集上,与其他几种最先进的点击率预测模型进行了比较,实验结果表明,VBGA可以获得良好的预测结果. 展开更多
关键词 点击率预测 注意力机制 图神经网络 多阶特征交互
在线阅读 下载PDF
基于图注意力交互的行人轨迹预测方法
13
作者 刘宏鉴 邹丹平 李萍 《计算机科学》 北大核心 2026年第1期97-103,共7页
行人轨迹预测在自动驾驶领域和智慧交通领域均取得了显著的研究进展。由于行人的行为受到自身和环境因素的双重影响,其轨迹具有不确定性和复杂性,因此准确利用轨迹数据的交互特征生成多模态轨迹仍存在较大挑战。目前,该领域中的主要挑... 行人轨迹预测在自动驾驶领域和智慧交通领域均取得了显著的研究进展。由于行人的行为受到自身和环境因素的双重影响,其轨迹具有不确定性和复杂性,因此准确利用轨迹数据的交互特征生成多模态轨迹仍存在较大挑战。目前,该领域中的主要挑战是准确建模行人之间的时空交互。面对复杂的行人时空交互,提出了一种基于图注意力的时空图神经网络,其量化表示行人之间的空间交互并重点关注关键交互,从而将行人轨迹信息表示为有向时空图,利用图注意力机制提取空间位置特征和交互特征,同时结合自注意力机制在时间维度提取时间特征并融合时空特征信息,最后生成结合历史轨迹和交互信息的多模态未来轨迹。在ETH-UCY数据集上的实验表明,与最佳基线模型相比,所提出的方法在平均位移误差(ADE)和最终位移误差(FDE)方面分别降低3.4%和2.1%,并具有较短的推理时间,确保实现实时推理响应。可视化的结果表明,所提出的方法能够生成具有可接受性的未来行人轨迹,展现了良好的工程应用前景。 展开更多
关键词 轨迹预测 时空图 图神经网络 图注意力 时空交互
在线阅读 下载PDF
基于多维特征融合与残差增强的交通流量预测
14
作者 张振琳 郭慧洁 +4 位作者 窦天凤 亓开元 吴栋 曲志坚 任崇广 《计算机应用研究》 北大核心 2026年第1期161-169,共9页
交通流量预测在智能交通系统中占据核心地位。针对当前交通流量预测方法在特征利用和时空依赖建模方面的不足,提出了一种新的基于多维特征融合与残差增强的交通流量预测模型MFRGCRN(multi-dimensional feature fusion and residual-enha... 交通流量预测在智能交通系统中占据核心地位。针对当前交通流量预测方法在特征利用和时空依赖建模方面的不足,提出了一种新的基于多维特征融合与残差增强的交通流量预测模型MFRGCRN(multi-dimensional feature fusion and residual-enhanced graph convolutional recurrent network)。该模型通过结合自编码器、深度可分离卷积及时间卷积全方位挖掘时空相关性,使用门控循环单元与多尺度卷积注意力结合学习数据的关联关系,同时利用多尺度残差增强机制实现对复杂模式的逐步建模。在四个真实数据集上的实验结果表明,所提出的模型在预测性能上优于对比的基线模型,尤其在PEMS08数据集的12步预测任务中,MAE、RMSE和MAPE分别降低约7.7%、2.9%和4.5%,展现出优异的长期预测能力。模型在准确性、稳定性和鲁棒性方面均表现出较强优势,为智能交通系统中的复杂交通流建模提供了有效解决方案。 展开更多
关键词 交通流量预测 动态图卷积网络 特征融合 残差建模 注意力机制
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
15
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
基于时序聚合异构图的高价值专利识别方法 被引量:1
16
作者 邓娜 喻卓群 +3 位作者 孙俊杰 陈旭 刘树栋 孙湘怡 《情报杂志》 北大核心 2025年第6期127-137,共11页
[研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更... [研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更新机制,生成反映专利价值变化的时序聚合异构图。构建融入双向注意力机制的异构图卷积网络模型,提高对专利异构特征的提取能力,实现对高价值专利的精确识别。[研究结果/结论]实验表明,该文方法在智能电网领域的专利数据集上准确率和F1值分别达到84.61%和84.59%,优于常规方法,验证了方法的有效性,为专利筛选和价值评估提供了新的视角和方法。 展开更多
关键词 高价值专利识别 异构图卷积网络 双向注意力机制 动态更新机制 多维特征
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
17
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
面向点云理解的双邻域图卷积方法
18
作者 李宗民 徐畅 +2 位作者 白云 鲜世洋 戎光彩 《浙江大学学报(工学版)》 北大核心 2025年第5期879-889,共11页
针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计... 针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计双邻域图卷积,通过集成高斯自适应聚合,在提取较大感受野范围内显著特征的同时,充分保留原始邻域信息.通过局部-全局信息交互来增大局部点的空间跨度,捕获远距离依赖关系.本文方法在分类数据集ModelNet40和ScanObjectNN上分别取得了94.1%、89.6%的总体精度,与其他先进算法相比有显著提升,较DGCNN分别提升了1.2%、11.5%.在部件分割数据集ShapeNetPart和语义分割数据集ScanNetv2、S3DIS上均获得优秀的性能,平均交并比分别为86.7%、74.9%和69.8%.通过大量的实验,证明了该模型的有效性. 展开更多
关键词 点云特征 图卷积网络 几何增强 局部全局交互 注意力机制
在线阅读 下载PDF
基于动态图卷积Transformer的瓦斯浓度预测模型
19
作者 董立红 赵楠楠 +1 位作者 王丹 秦昳 《工矿自动化》 北大核心 2025年第9期72-80,共9页
准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导... 准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导致模型泛化性能较差。为了捕获瓦斯浓度变化的时空依赖性,提高瓦斯预测精确性,提出一种融合多尺度机制的时序−动态图卷积Transformer(TDMformer)并用于构建瓦斯浓度预测模型。在ITransformer框架基础上,设计了时序−变量注意力机制,用于同时建模时序与变量维度特征;融合动态图卷积网络,用于描述井下瓦斯传感器网络拓扑结构,捕获瓦斯浓度数据的空间依赖性;引入多尺度门控Tanh单元,以增强多尺度特征提取能力。实验结果表明,与Graph−WaveNet,GRU,Transformer,AGCRN,DSformer,STAEformer,FourierGNN等模型相比,TDMformer模型的均方根误差分别降低了24.87%,26.37%,21.69%,19.57%,11.90%,10.84%,9.20%,平均绝对误差分别降低了17.09%,25.58%,26.89%,14.56%,11.10%,5.75%,4.53%,拟合系数分别提高了5.94%,6.51%,4.79%,4.12%,2.21%,2.08%,1.76%,验证了该模型具有更高的预测精度和数据拟合度。 展开更多
关键词 瓦斯浓度预测 TRANSFORMER ITransformer 动态图卷积网络 时序-变量注意力机制
在线阅读 下载PDF
考虑时空信息结合的电力系统暂态稳定评估
20
作者 李欣 李文斌 +3 位作者 赵张飞 李新宇 欧阳子帅 郭攀锋 《电力系统及其自动化学报》 北大核心 2025年第6期68-80,共13页
为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分... 为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分挖掘电力系统运行数据中的时序特征信息及空间特征信息,并采用拼接操作对特征信息进行融合,提升模型对电力系统暂态稳定特征的提取与表征能力。然后,引入焦点损失函数提升模型对失稳样本的辨识能力,并采用物理知识对其进行改进,以增加模型评估结果的可信性。最后,分别采用IEEE 39、IEEE 145和IEEE 300节点系统对所提模型进行验证,实验结果表明,所提评估模型相较其他评估模型具有更优的评估性能及可信性。 展开更多
关键词 暂态稳定评估 时空特征 图注意力 交互卷积 物理知识
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部