Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional a...Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research.展开更多
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ...Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
Flooding and heavy rainfall under extreme weather conditions pose significant challenges to target detection algorithms.Traditional methods often struggle to address issues such as image blurring,dynamic noise interfe...Flooding and heavy rainfall under extreme weather conditions pose significant challenges to target detection algorithms.Traditional methods often struggle to address issues such as image blurring,dynamic noise interference,and variations in target scale.Conventional neural network(CNN)-based target detection approaches face notable limitations in such adverse weather scenarios,primarily due to the fixed geometric sampling structures that hinder adaptability to complex backgrounds and dynamically changing object appearances.To address these challenges,this paper proposes an optimized YOLOv9 model incorporating an improved deformable convolutional network(DCN)enhanced with a multi-scale dilated attention(MSDA)mechanism.Specifically,the DCN module enhances themodel’s adaptability to target deformation and noise interference by adaptively adjusting the sampling grid positions,while also integrating feature amplitude modulation to further improve robustness.Additionally,theMSDA module is introduced to capture contextual features acrossmultiple scales,effectively addressing issues related to target occlusion and scale variation commonly encountered in flood-affected environments.Experimental evaluations are conducted on the ISE-UFDS and UA-DETRAC datasets.The results demonstrate that the proposedmodel significantly outperforms state-of-the-art methods in key evaluation metrics,including precision,recall,F1-score,and mAP(Mean Average Precision).Notably,the model exhibits superior robustness and generalization performance under simulated severe weather conditions,offering reliable technical support for disaster emergency response systems.This study contributes to enhancing the accuracy and real-time capabilities of flood early warning systems,thereby supporting more effective disaster mitigation strategies.展开更多
Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has...Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has two limitations:(1)the complex and changeable environmental noise,which cannot ensure the high-performance diagnosis of the model in different noise domains and(2)the possibility of multiple faults occurring simultaneously,which brings challenges to the model diagnosis.This paper presents a novel anti-noise multi-scale convolutional neural network(AM-CNN)for solving the issue of compound fault diagnosis under different intensity noises.First,we propose a residual pre-processing block according to the principle of noise superposition to process the input information and present the residual loss to construct a new loss function.Additionally,considering the strong coupling of input information,we design a multi-scale convolution block to realize multi-scale feature extraction for enhancing the proposed model’s robustness and effectiveness.Finally,a multi-label classifier is utilized to simultaneously distinguish multiple bearing faults.The proposed AM-CNN is verified under our collected compound fault dataset.On average,AM-CNN improves 39.93%accuracy and 25.84%F1-macro under the no-noise working condition and 45.67%accuracy and 27.72%F1-macro under different intensity noise working conditions compared with the existing methods.Furthermore,the experimental results show that AM-CNN can achieve good cross-domain performance with 100%accuracy and 100%F1-macro.Thus,AM-CNN has the potential to be an accurate and stable fault diagnosis tool.展开更多
For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intellige...For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intelligence technology in machine vision,a new automatic detection approach for classifying tunnel lithology based on tunnel face images was developed.The method benefits from residual learning for training a deep convolutional neural network(DCNN),and a multi-scale dilated convolutional attention block is proposed.The block with different dilation rates can provide various receptive fields,and thus it can extract multi-scale features.Moreover,the attention mechanism is utilized to select the salient features adaptively and further improve the performance of the model.In this study,an initial image data set made up of photographs of tunnel faces consisting of basalt,granite,siltstone,and tuff was first collected.After classifying and enhancing the training,validation,and testing data sets,a new image data set was generated.A comparison of the experimental findings demonstrated that the suggested approach outperforms previous classifiers in terms of various indicators,including accuracy,precision,recall,F1-score,and computing time.Finally,a visualization analysis was performed to explain the process of the network in the classification of tunnel lithology through feature extraction.Overall,this study demonstrates the potential of using artificial intelligence methods for in situ rock lithology classification utilizing geological images of the tunnel face.展开更多
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金Open Access funding provided by the National Institutes of Health(NIH)The funding for this project was provided by NCATS Intramural Fund.
文摘Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research.
基金supported by the International Research Center of Big Data for Sustainable Development Goals under Grant No.CBAS2022GSP05the Open Fund of State Key Laboratory of Remote Sensing Science under Grant No.6142A01210404the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant No.KLIGIP-2022-B03.
文摘Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.
基金financially supported by the National Key R&D Program of China(No.2022YFC3090603)R&DProgramof BeijingMunicipal EducationCommission(No.KZ202211417049)。
文摘Flooding and heavy rainfall under extreme weather conditions pose significant challenges to target detection algorithms.Traditional methods often struggle to address issues such as image blurring,dynamic noise interference,and variations in target scale.Conventional neural network(CNN)-based target detection approaches face notable limitations in such adverse weather scenarios,primarily due to the fixed geometric sampling structures that hinder adaptability to complex backgrounds and dynamically changing object appearances.To address these challenges,this paper proposes an optimized YOLOv9 model incorporating an improved deformable convolutional network(DCN)enhanced with a multi-scale dilated attention(MSDA)mechanism.Specifically,the DCN module enhances themodel’s adaptability to target deformation and noise interference by adaptively adjusting the sampling grid positions,while also integrating feature amplitude modulation to further improve robustness.Additionally,theMSDA module is introduced to capture contextual features acrossmultiple scales,effectively addressing issues related to target occlusion and scale variation commonly encountered in flood-affected environments.Experimental evaluations are conducted on the ISE-UFDS and UA-DETRAC datasets.The results demonstrate that the proposedmodel significantly outperforms state-of-the-art methods in key evaluation metrics,including precision,recall,F1-score,and mAP(Mean Average Precision).Notably,the model exhibits superior robustness and generalization performance under simulated severe weather conditions,offering reliable technical support for disaster emergency response systems.This study contributes to enhancing the accuracy and real-time capabilities of flood early warning systems,thereby supporting more effective disaster mitigation strategies.
基金supported by the National Key R&D Program of China(Grant No.2020YFB1709604)the State Key Laboratory of Mechanical System and Vibration(Grant No.MSVZD202103)+1 种基金the Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0102)。
文摘Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has two limitations:(1)the complex and changeable environmental noise,which cannot ensure the high-performance diagnosis of the model in different noise domains and(2)the possibility of multiple faults occurring simultaneously,which brings challenges to the model diagnosis.This paper presents a novel anti-noise multi-scale convolutional neural network(AM-CNN)for solving the issue of compound fault diagnosis under different intensity noises.First,we propose a residual pre-processing block according to the principle of noise superposition to process the input information and present the residual loss to construct a new loss function.Additionally,considering the strong coupling of input information,we design a multi-scale convolution block to realize multi-scale feature extraction for enhancing the proposed model’s robustness and effectiveness.Finally,a multi-label classifier is utilized to simultaneously distinguish multiple bearing faults.The proposed AM-CNN is verified under our collected compound fault dataset.On average,AM-CNN improves 39.93%accuracy and 25.84%F1-macro under the no-noise working condition and 45.67%accuracy and 27.72%F1-macro under different intensity noise working conditions compared with the existing methods.Furthermore,the experimental results show that AM-CNN can achieve good cross-domain performance with 100%accuracy and 100%F1-macro.Thus,AM-CNN has the potential to be an accurate and stable fault diagnosis tool.
基金funded by the National Natural Science Foundation of China(Grant No.51978460)the Open Fund of State Key Laboratory of Shield Machine and Boring Technology(No.SKLST-2019-K08).
文摘For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intelligence technology in machine vision,a new automatic detection approach for classifying tunnel lithology based on tunnel face images was developed.The method benefits from residual learning for training a deep convolutional neural network(DCNN),and a multi-scale dilated convolutional attention block is proposed.The block with different dilation rates can provide various receptive fields,and thus it can extract multi-scale features.Moreover,the attention mechanism is utilized to select the salient features adaptively and further improve the performance of the model.In this study,an initial image data set made up of photographs of tunnel faces consisting of basalt,granite,siltstone,and tuff was first collected.After classifying and enhancing the training,validation,and testing data sets,a new image data set was generated.A comparison of the experimental findings demonstrated that the suggested approach outperforms previous classifiers in terms of various indicators,including accuracy,precision,recall,F1-score,and computing time.Finally,a visualization analysis was performed to explain the process of the network in the classification of tunnel lithology through feature extraction.Overall,this study demonstrates the potential of using artificial intelligence methods for in situ rock lithology classification utilizing geological images of the tunnel face.