期刊文献+
共找到250,166篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
1
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
2
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 Deep learning underwater target detection attention mechanism
在线阅读 下载PDF
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
3
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
4
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
5
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
Enhanced Multi-Scale Object Detection Algorithm for Foggy Traffic Scenarios
6
作者 Honglin Wang Zitong Shi Cheng Zhu 《Computers, Materials & Continua》 2025年第2期2451-2474,共24页
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal... In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios. 展开更多
关键词 Deep learning object detection foggy scenes traffic detection YOLOv8
在线阅读 下载PDF
MGD-YOLO:An Enhanced Road Defect Detection Algorithm Based on Multi-Scale Attention Feature Fusion
7
作者 Zhengji Li Fazhan Xiong +6 位作者 Boyun Huang Meihui Li Xi Xiao Yingrui Ji Jiacheng Xie Aokun Liang Hao Xu 《Computers, Materials & Continua》 2025年第9期5613-5635,共23页
Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects un... Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects under complex road conditions.To address these limitations,we propose Multi-Scale Guided Detection YOLO(MGD-YOLO),a novel lightweight and high-performance object detector built upon You Only Look Once Version 5(YOLOv5).The proposed model integrates three key components:(1)a Multi-Scale Dilated Attention(MSDA)module to enhance semantic feature extraction across varying receptive fields;(2)Depthwise Separable Convolution(DSC)to reduce computational cost and improve model generalization;and(3)a Visual Global Attention Upsampling(VGAU)module that leverages high-level contextual information to refine low-level features for precise localization.Extensive experiments on three public road defect benchmarks demonstrate that MGD-YOLO outperforms state-of-the-art models in both detection accuracy and efficiency.Notably,our model achieves 87.9%accuracy in crack detection,88.3%overall precision on TD-RD dataset,while maintaining fast inference speed and a compact architecture.These results highlight the potential of MGD-YOLO for deployment in real-time,resource-constrained scenarios,paving the way for practical and scalable intelligent road maintenance systems. 展开更多
关键词 YOLO road damage detection object detection computer vision deep learning
在线阅读 下载PDF
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
8
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 Surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
A Multi-Scale Attention-Based Pedestrian Detection Method for Roadways Using the YOLOv5 Framework
9
作者 Ruihan Wang Boling Liu Tingyu Liao 《Journal of Electronic Research and Application》 2025年第1期224-232,共9页
Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(... Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection. 展开更多
关键词 YOLOv5 PEDESTRIAN detection FEATURE FUSION
在线阅读 下载PDF
Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network
10
作者 Yunho Na Munsu Jeon +4 位作者 Seungmin Joo Junsoo Kim Ki-Yong Oh Min Ku Kim Joon-Young Park 《Computer Modeling in Engineering & Sciences》 2025年第7期1013-1044,共32页
This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits thre... This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits three key characteristics.First,virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images.This enables the neural network to learn various features of transmission facilities to improve the detection performance.Second,the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps,enabling the neural network to perform precise object detection in various environments.Third,an effective bounding box optimization method called Scylla-IoU is deployed on FAMSR-Net,considering the intersection over union,center point distance,angle,and shape of the bounding box.This enables the detection of power facilities of various sizes accurately.Extensive experiments demonstrated that FAMSRNet outperforms other neural networks in detecting power facilities.FAMSR-Net also achieved the highest detection accuracy when virtual images of the transmission facilities were co-trained in the training phase.The proposed framework is effective for the scheduled operation and maintenance of transmission facilities because an optical camera is currently the most promising tool for unmanned aerial vehicles.This ultimately contributes to improved inspection efficiency,reduced maintenance risks,and more reliable power delivery across extensive transmission facilities. 展开更多
关键词 Object detection virtual image transmission facility convolutional block attention module Scylla-IoU
在线阅读 下载PDF
Face Forgery Detection via Multi-Scale Dual-Modality Mutual Enhancement Network
11
作者 Yuanqing Ding Hanming Zhai +3 位作者 Qiming Ma Liang Zhang Lei Shao Fanliang Bu 《Computers, Materials & Continua》 2025年第10期905-923,共19页
As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many de... As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many deep learning-based facial forgery detection approaches show promise,they often fail to delve deeply into the complex relationships between image features and forgery indicators,limiting their effectiveness to specific forgery techniques.To address this challenge,we propose a dual-branch collaborative deepfake detection network.The network processes video frame images as input,where a specialized noise extraction module initially extracts the noise feature maps.Subsequently,the original facial images and corresponding noise maps are directed into two parallel feature extraction branches to concurrently learn texture and noise forgery clues.An attention mechanism is employed between the two branches to facilitate mutual guidance and enhancement of texture and noise features across four different scales.This dual-modal feature integration enhances sensitivity to forgery artifacts and boosts generalization ability across various forgery techniques.Features from both branches are then effectively combined and processed through a multi-layer perception layer to distinguish between real and forged video.Experimental results on benchmark deepfake detection datasets demonstrate that our approach outperforms existing state-of-the-art methods in terms of detection performance,accuracy,and generalization ability. 展开更多
关键词 Face forgery detection dual branch network noise features attention mechanism multiple scale
在线阅读 下载PDF
Biomimetic Engineering High-Sensitivity Flexible Pressure Sensors with Ultra-Wide Pressure Detection Range via Synergistic Interlocked Structures and Multi-scale Micro-dome Interfaces
12
作者 Junqiu Zhang Jiachao Wu +16 位作者 Lili Liu Tao Sun Xiangbo Gu Zijian Shi Xueyang Li Xueping Zhang Yu Chen Jiqi Gao Kejun Wang Bin Zhu Wenze Sun Yutao Mei Yubo Yan Yan Li Zhijing Wu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第5期2550-2560,共11页
Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigi... Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range. 展开更多
关键词 Biomimetic engineering Flexible pressure sensors Ultrahigh sensitivity and wide-range detection Multiscale interface Interlocked structure
在线阅读 下载PDF
MSL-Net:a lightweight apple leaf disease detection model based on multi-scale feature fusion
13
作者 YANG Kangyi YAN Chunman 《Optoelectronics Letters》 2025年第12期745-752,共8页
Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstl... Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstly,a multiplexed aggregated feature extraction network is proposed using residual bottleneck block(RES-Bottleneck)and middle partial-convolution(MP-Conv)to capture multi-scale spatial features and enhance focus on disease features for better differentiation between disease targets and background information.Secondly,a lightweight feature fusion network is designed using scale-fuse concatenation(SF-Cat)and triple-scale sequence feature fusion(TSSF)module to merge multi-scale feature maps comprehensively.Depthwise convolution(DWConv)and GhostNet lighten the network,while the cross stage partial bottleneck with 3 convolutions ghost-normalization attention module(C3-GN)reduces missed detections by suppressing irrelevant background information.Finally,soft non-maximum suppression(Soft-NMS)is used in the post-processing stage to improve the problem of misdetection of dense disease sites.The results show that the MSL-Net improves mean average precision at intersection over union of 0.5(mAP@0.5)by 2.0%over the baseline you only look once version 5s(YOLOv5s)and reduces parameters by 44%,reducing computation by 27%,outperforming other state-of-the-art(SOTA)models overall.This method also shows excellent performance compared to the latest research. 展开更多
关键词 enhance focus disease features background i multi scale feature fusion apple leaf disease spots residual bottleneck block res bottleneck multiplexed aggregated feature extraction network lightweight network apple leaf disease detection
原文传递
Unlocking the silent signals:Motor kinematics as a new frontier in early detection of mild cognitive impairment
14
作者 Takahiko Nagamine 《World Journal of Psychiatry》 2026年第1期1-6,共6页
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc... The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions. 展开更多
关键词 Mild cognitive impairment Early detection Motor kinematics Gait analysis Handwriting analysis Digital biomarkers Machine learning
暂未订购
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
15
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
16
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural NETWORK (CNN) FEATURE PYRAMID NETWORK (FPN) object detection deconvolution.
在线阅读 下载PDF
Image Tamper Detection and Multi-Scale Self-Recovery Using Reference Embedding with Multi-Rate Data Protection 被引量:1
17
作者 Navid Daneshmandpour Habibollah Danyali Mohammad Sadegh Helfroush 《China Communications》 SCIE CSCD 2019年第11期154-166,共13页
This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult... This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods. 展开更多
关键词 TAMPER detection image recovery multi-scale SELF-RECOVERY tolerable tampering rate
在线阅读 下载PDF
A MULTI-SCALE MORPHOLOGICAL APPROACH TO SAR IMAGE EDGE DETECTION 被引量:1
18
作者 Tang Zhengjun Song Jianshe (Section of Information Engineering, Xi’an Hi-technology Research Institute, Xi’an 710025) 《Journal of Electronics(China)》 2000年第3期208-212,共5页
This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the a... This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance. 展开更多
关键词 MATHEMATICAL MORPHOLOGY multi-scale analysis Edge detection Performance evaluation
在线阅读 下载PDF
DDoS Attack Detection via Multi-Scale Convolutional Neural Network 被引量:2
19
作者 Jieren Cheng Yifu Liu +3 位作者 Xiangyan Tang Victor SSheng Mengyang Li Junqi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1317-1333,共17页
Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.... Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.In this paper,we propose a DDoS attack detection method based on network flow grayscale matrix feature via multi-scale convolutional neural network(CNN).According to the different characteristics of the attack flow and the normal flow in the IP protocol,the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary.Based on the network flow grayscale matrix feature(GMF),the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation,global features and local features of the network flow are extracted.A DDoS attack classifier based on multi-scale convolution neural network is constructed.Experiments show that compared with correlation methods,this method can improve the robustness of the classifier,reduce the false alarm rate and the missing alarm rate. 展开更多
关键词 DDoS attack detection convolutional neural network network flow feature extraction
在线阅读 下载PDF
Fingerprint Liveness Detection Based on Multi-Scale LPQ and PCA 被引量:13
20
作者 Chengsheng Yuan Xingming Sun Rui Lv 《China Communications》 SCIE CSCD 2016年第7期60-65,共6页
Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici... Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection. 展开更多
关键词 fingerprint liveness detection wavelet transform local phase quantity principal component analysis support vector machine
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部