Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram ...BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram using internal and external validation to predict survival in patients with ampullary adenocarcinoma.METHODS Data were sourced from the surveillance,epidemiology,and end results stat database.The patients in the database were randomized in a 7:3 ratio into training and validation groups.Using Cox regression univariate and multivariate analyses in the training group,we identified independent risk factors for overall survival and cancer-specific survival to develop the nomogram.The nomogram was validated with a cohort of patients from the First Affiliated Hospital of the Army Medical University.RESULTS For overall and cancer-specific survival,12(sex,age,race,lymph node ratio,tumor size,chemotherapy,surgical modality,T stage,tumor differentiation,brain metastasis,lung metastasis,and extension)and 6(age;surveillance,epidemiology,and end results stage;lymph node ratio;chemotherapy;surgical modality;and tumor differentiation)independent risk factors,respectively,were incorporated into the nomogram.The area under the curve values at 1,3,and 5 years,respectively,were 0.807,0.842,and 0.826 for overall survival and 0.816,0.835,and 0.841 for cancer-specific survival.The internal and external validation cohorts indicated good consistency of the nomogram.CONCLUSION The dynamic nomogram offers robust predictive efficacy for the overall and cancer-specific survival of ampullary adenocarcinoma.展开更多
A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking an...A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking and policies related to human/environmental worlds at local, regional, and global scales. Maps are an important part of these innovative and ongoing research approaches. In this context, we consider urban forests a topic meriting more attention of scholars studying the geographic and environmental intersections of the natural sciences with the social sciences and humanities. We construct two innovative knowledge bases, one a conceptual framework based on major themes and concepts related to mapping urban forests using key words of the first 100 results of a Google Scholar query and a second using the number of Google Scholar hyperlinks about mapping urban forests in 244 capital cities. We discovered that the constructed world maps reveal vast global unevenness in our knowledge about urban forests in hyperlink numbers and ratios, results that merit further attention by disciplinary, international and interdisciplinary scholarly communities.展开更多
The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept o...The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept of characteristic databases alliance,using marine characteristic databases as a case for feasibility analysis and discussion.The paper outlines the development path for such alliances and offers recommendations for future growth,aiming to establish a collaborative platform for the development of characteristic databases.展开更多
Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)d...Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)databases.This study aims to establish a best-practice methodological framework,referred to as BRIDGE,to guide the construction of ICWM databases using EHRs.Methods:We developed the methodological framework through a comprehensive process,including systematic literature review,synthesis of empirical experiences,thematic expert discussions,and consultation with an external panel to reach consensus.Results:The BRIDGE framework outlines 6 core components for ICWM-EHR database development:Overall design,database architecture,data extraction and linkage,data governance,data verification,and data quality evaluation.Key data elements include variables related to study population,treatment or exposure,outcomes,and confounders.These databases support various research applications,particularly in evaluating the effectiveness and safety of integrative therapies.To demonstrate its practical value,we developed an ICWM-EHR database on women’s reproductive lifespan,encompassing 2,064,482 patients.This database captures women’s health conditions across the life course,from reproductive age to older adulthood.Conclusions:The BRIDGE methodological framework provides a standardized approach to building high-quality ICWM-EHR databases.It offers a unique opportunity to strengthen the methodological rigor and real-world relevance of Chinese medicine research in integrated healthcare settings.展开更多
The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,...The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.展开更多
The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,...The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.展开更多
Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a co...Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.展开更多
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This...Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.展开更多
The kagome lattice,characterized by a hexagonal arrangement of corner-sharing equilateral triangles,has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic...The kagome lattice,characterized by a hexagonal arrangement of corner-sharing equilateral triangles,has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic properties.The identification and characterization of this class of materials are critical for advancing our understanding of their role in emergent phenomena such as superconductivity.In this study,we developed a high-throughput screening framework for the systematic identification and classification of superconducting materials with kagome lattices,integrating them into established materials databases.Leveraging the Materials Project(MP)database and the MDR Super Con dataset,we analyzed over 150000 inorganic compounds and cross-referenced 26000 known superconductors.Using geometry-based structural modeling and experimental validation,we identified 129 kagome superconductors belonging to 17 distinct structural families,many of which had not previously been recognized as kagome systems.The materials are further classified into three categories in terms of topological flat bands,clean band structures,and coexisting magnetic or charge density wave(CDW)orderings.Based on these results,we established a database comprising 129 kagome superconductors,including the detailed crystallographic,electronic,and superconducting properties of these materials.展开更多
Natural products(NPs)have long held a significant position in various fields such as medicine,food,agriculture,and materials.The chemical space covered by NPs is extensive but often underexplored.Therefore,high-throug...Natural products(NPs)have long held a significant position in various fields such as medicine,food,agriculture,and materials.The chemical space covered by NPs is extensive but often underexplored.Therefore,high-throughput and efficient methodologies for the annotation and discovery of NPs are desired to address the complexity and diversity of NP-based systems.Mass spectrometry(MS)has emerged as a powerful platform for the annotation and discovery of NPs.MS databases provide vital support for the structural characterization of NPs by integrating extensive mass spectral data and sample information.Additionally,the released annotation methodologies,based on a variety of informatics tools,continuously improve the ability to annotate the structure and properties of compounds.This review examines the current mainstream databases and annotation methodologies,focusing on their advantages and limitations.Prospects for future technological advancements are then discussed in terms of novel applications and research objectives.Through a systematic overview,this review aims to provide valuable insights and a reference for MS-based NPs annotation,thereby promoting the discovery of novel natural entities.展开更多
The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery te...The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions.展开更多
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金Supported by the Appropriate Technology Promotion Program in Chongqing,No.2023jstg005.
文摘BACKGROUND Ampullary adenocarcinoma is a rare malignant tumor of the gastrointestinal tract.Currently,only a few cases have been reported,resulting in limited information on survival.AIM To develop a dynamic nomogram using internal and external validation to predict survival in patients with ampullary adenocarcinoma.METHODS Data were sourced from the surveillance,epidemiology,and end results stat database.The patients in the database were randomized in a 7:3 ratio into training and validation groups.Using Cox regression univariate and multivariate analyses in the training group,we identified independent risk factors for overall survival and cancer-specific survival to develop the nomogram.The nomogram was validated with a cohort of patients from the First Affiliated Hospital of the Army Medical University.RESULTS For overall and cancer-specific survival,12(sex,age,race,lymph node ratio,tumor size,chemotherapy,surgical modality,T stage,tumor differentiation,brain metastasis,lung metastasis,and extension)and 6(age;surveillance,epidemiology,and end results stage;lymph node ratio;chemotherapy;surgical modality;and tumor differentiation)independent risk factors,respectively,were incorporated into the nomogram.The area under the curve values at 1,3,and 5 years,respectively,were 0.807,0.842,and 0.826 for overall survival and 0.816,0.835,and 0.841 for cancer-specific survival.The internal and external validation cohorts indicated good consistency of the nomogram.CONCLUSION The dynamic nomogram offers robust predictive efficacy for the overall and cancer-specific survival of ampullary adenocarcinoma.
文摘A distinctive feature of scholarly communities today is exploring topics and concepts in interdisciplinary and international contexts. This observation is increasingly apparent and visible in advancing our thinking and policies related to human/environmental worlds at local, regional, and global scales. Maps are an important part of these innovative and ongoing research approaches. In this context, we consider urban forests a topic meriting more attention of scholars studying the geographic and environmental intersections of the natural sciences with the social sciences and humanities. We construct two innovative knowledge bases, one a conceptual framework based on major themes and concepts related to mapping urban forests using key words of the first 100 results of a Google Scholar query and a second using the number of Google Scholar hyperlinks about mapping urban forests in 244 capital cities. We discovered that the constructed world maps reveal vast global unevenness in our knowledge about urban forests in hyperlink numbers and ratios, results that merit further attention by disciplinary, international and interdisciplinary scholarly communities.
文摘The characteristic databases in China face issues such as narrow resource coverage,low levels of standardization and normalization,and limited data sharing.To address these challenges,this paper proposes the concept of characteristic databases alliance,using marine characteristic databases as a case for feasibility analysis and discussion.The paper outlines the development path for such alliances and offers recommendations for future growth,aiming to establish a collaborative platform for the development of characteristic databases.
基金supported by the National Key Research&Development Program of China(No.2024YFC3505800)the National Natural Science Foundation of China(Nos.82474334,82474335 and 72174132)+3 种基金National Science Fund for Distinguished Young Scholars(No.82225049)the Key Research&Development Projects of Sichuan Provincial Department of Science and Technology(Nos.2024YFFK0174 and 2024YFFK0152)1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYYC24010 and ZYGD23004)the Special Fund for Traditional Chinese Medicine of Sichuan Provincial Administration of Traditional Chinese Medicine(No.2024zd023).
文摘Objectives:Electronic health records(EHRs)offer valuable real-world data(RWD)for Chinese medicine research.However,significant methodological challenges remain in developing integrative Chinese-Western medicine(ICWM)databases.This study aims to establish a best-practice methodological framework,referred to as BRIDGE,to guide the construction of ICWM databases using EHRs.Methods:We developed the methodological framework through a comprehensive process,including systematic literature review,synthesis of empirical experiences,thematic expert discussions,and consultation with an external panel to reach consensus.Results:The BRIDGE framework outlines 6 core components for ICWM-EHR database development:Overall design,database architecture,data extraction and linkage,data governance,data verification,and data quality evaluation.Key data elements include variables related to study population,treatment or exposure,outcomes,and confounders.These databases support various research applications,particularly in evaluating the effectiveness and safety of integrative therapies.To demonstrate its practical value,we developed an ICWM-EHR database on women’s reproductive lifespan,encompassing 2,064,482 patients.This database captures women’s health conditions across the life course,from reproductive age to older adulthood.Conclusions:The BRIDGE methodological framework provides a standardized approach to building high-quality ICWM-EHR databases.It offers a unique opportunity to strengthen the methodological rigor and real-world relevance of Chinese medicine research in integrated healthcare settings.
文摘The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.
文摘The journal of Meteorological and Environmental Research[ISSN:2152-3940]has been included and stored by the following famous databases:CA,CABI,CSA,EBSCO,UPD,AGRIS,EA,Chinese Science and Technology Periodical Database,and CNKI,as well as Library of Congress,United States.
文摘Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.15308024)a grant from Research Centre for Carbon-Strategic Catalysis,The Hong Kong Polytechnic University(CE2X).
文摘Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFE0202600)the National Natural Science Foundation of China(Grant No.52272268)+3 种基金the Key Research Program of Frontier SciencesCAS(Grant No.QYZDJ-SSWSLH013)the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102)the Youth Innovation Promotion Association of CAS(Grant No.2019005)。
文摘The kagome lattice,characterized by a hexagonal arrangement of corner-sharing equilateral triangles,has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic properties.The identification and characterization of this class of materials are critical for advancing our understanding of their role in emergent phenomena such as superconductivity.In this study,we developed a high-throughput screening framework for the systematic identification and classification of superconducting materials with kagome lattices,integrating them into established materials databases.Leveraging the Materials Project(MP)database and the MDR Super Con dataset,we analyzed over 150000 inorganic compounds and cross-referenced 26000 known superconductors.Using geometry-based structural modeling and experimental validation,we identified 129 kagome superconductors belonging to 17 distinct structural families,many of which had not previously been recognized as kagome systems.The materials are further classified into three categories in terms of topological flat bands,clean band structures,and coexisting magnetic or charge density wave(CDW)orderings.Based on these results,we established a database comprising 129 kagome superconductors,including the detailed crystallographic,electronic,and superconducting properties of these materials.
基金supported by the National Natural Science Foundation of China(Nos.82274064,82374026,and 82204591)。
文摘Natural products(NPs)have long held a significant position in various fields such as medicine,food,agriculture,and materials.The chemical space covered by NPs is extensive but often underexplored.Therefore,high-throughput and efficient methodologies for the annotation and discovery of NPs are desired to address the complexity and diversity of NP-based systems.Mass spectrometry(MS)has emerged as a powerful platform for the annotation and discovery of NPs.MS databases provide vital support for the structural characterization of NPs by integrating extensive mass spectral data and sample information.Additionally,the released annotation methodologies,based on a variety of informatics tools,continuously improve the ability to annotate the structure and properties of compounds.This review examines the current mainstream databases and annotation methodologies,focusing on their advantages and limitations.Prospects for future technological advancements are then discussed in terms of novel applications and research objectives.Through a systematic overview,this review aims to provide valuable insights and a reference for MS-based NPs annotation,thereby promoting the discovery of novel natural entities.
基金Project supported by funding from the National Natural Science Foundation of China(Grant Nos.52172258,52473227 and 52171150)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0500200)。
文摘The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions.