期刊文献+
共找到81,379篇文章
< 1 2 250 >
每页显示 20 50 100
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
1
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
2
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
3
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
4
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
A Multi-scale Corrosion Fatigue Damage Model of Aluminum Alloy Considering Multiple Pits and Cracks 被引量:4
5
作者 Bin Sun Yang Zheng Zhaoxia Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第6期731-743,共13页
A multi-scale model is developed to link the continuum damage variable in macroscale to the number density of multiple pits and cracks in microscale for studying the corrosion fatigue of aluminum alloy from multi-scal... A multi-scale model is developed to link the continuum damage variable in macroscale to the number density of multiple pits and cracks in microscale for studying the corrosion fatigue of aluminum alloy from multi-scale viewpoint.The developed model is used to predict the coherent multi-scale corrosion fatigue process of aluminum alloy component in the 3.5 wt% NaC1water solution under constant stress amplitude at a nominal frequency of 5Hz, and the numerical prediction results are compared with the experimental results.It shows that the model is effective and can be used to study the corrosion fatigue mechanisms of alurninum alloy from both macro and microscale viewpoints. 展开更多
关键词 multi-scale CONTINUUM damage PIT crack CORROSION fatigue Aluminum alloy
原文传递
Effects of multi-scale wave-induced fluid flow on seismic dispersion,attenuation and frequency-dependent anisotropy in periodic-layered porous-cracked media
6
作者 Zhao-Yun Zong Yan-Wen Feng +1 位作者 Fu-Bin Chen Guang-Zhi Zhang 《Petroleum Science》 2025年第2期684-696,共13页
The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity... The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity(i.e.,dispersion) and elastic anisotropy parameters.The relevant knowledge is of great importance for geofluid discrimination and hydrocarbon exploration in the porous shale reservoirs.We derive the wave equations for a periodic layered transversely isotropy medium with a vertical axis of symmetry(VTI) concurrently with the annular cracks(PLPC medium) based on the periodic-layered model and anisotropic Biot's theory,which simultaneously incorporate the effects of microscopic squirt fluid flow,mesoscopic interlayer fluid flow and macroscopic global fluid flow.Notably,the microscopic squirt shorten fluid flow emerges between the annular-shaped cracks and stiff pores,which generates one attenuation peak.Specifically,we first establish the stress-strain relationship and pore fluid pressure in a PLPC medium,and then use them to derive the wave equations by means of the Newton's second law.The plane analysis is implemented on the wave equations to yield the analytic solutions for phase velocities and attenuation factors of four waves,namely,fast P-wave,slow P-wave,SV-wave and SH-wave,and the anisotropy parameters can be therefore computed.Simulation results show that P-wave velocity have three attenuation peaks throughout the full frequency band,which respectively correspond to the influences of interlayer flow,the squirt flow and the Biot flow.Through the results of seismic velocity dispersion and attenuation at different incident angles,we find that the WIFF mechanism also has a significant impact on the dispersion characteristics of elastic anisotropy parameters within the low-mid frequency band.Moreover,it is shown that several poroelastic parameters,such as layer thickness ratio,crack aspect ratio and crack density have notable influence on seismic dispersion and attenuation.We compare the proposed modeled velocities with that given by the existing theory to confirm its validity.Our formulas and result can provide a better understanding of wave propagation in PLPC medium by considering the unified impacts of micro-,meso-and macro-scale WIFF mechanisms,which potentially lays a theoretical basis of rock physics for seismic interpretation. 展开更多
关键词 Wave-induced fluid flow multi-scale wave equations ANISOTROPY Dispersion and attenuation
原文传递
SIMULATION OF CRACK DIAGNOSIS OF ROTOR BASED ON MULTI-SCALE SINGUUR-SPECTRUM ANALYSIS 被引量:4
7
作者 LI Ruqiang LIU Yuanfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期282-285,共4页
In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not th... In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders. 展开更多
关键词 ROTOR crack Fault diagnosis multi-scale singular-spectrum analysis(MS-SSA)
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
8
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
From crack-prone to crack-free:Eliminating cracks in additively manufacturing of high-strength Mg_(2)Si-modified Al-Mg-Si alloys 被引量:3
9
作者 Tao Wen Zhicheng Li +6 位作者 Jianying Wang Yimou Luo Feipeng Yang Zhilin Liu Dong Qiu Hailin Yang Shouxun Ji 《Journal of Materials Science & Technology》 2025年第1期276-291,共16页
Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si... Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si alloys fabricated by laser powder-bed fusion(L-PBF).The results indicate that the eutectic Mg_(2) Si phase possesses a strong ability to reduce crack susceptibility.It can enhance the grain growth restriction factor in the initial stage of solidification and promote eutectic filling in the terminal stage of solidifica-tion.The crack-free L-PBFed Al-x Mg_(2) Si alloys(x=6 wt.%,9 wt.%,and 12 wt.%)exhibit the combination of low crack susceptibility index(CSI),superior ability for liquid filling,and grain refinement.Particularly,the L-PBFed Al-9Mg_(2) Si alloy shows improved mechanical properties(e.g.yield strength of 397 MPa and elongation of 7.3%).However,the cracks are more likely to occur in the region near the columnar grain boundaries of the L-PBFed Al-3Mg_(2) Si alloy with a large solidification range and low eutectic content for liquid filling.Correspondingly,the L-PBFed Al-3Mg_(2) Si alloy shows poor bearing capacity of mechanical properties.The precise tuning of Mg_(2) Si eutectic content can offer an innovative strategy for eliminating cracks in additively manufactured Al-Mg-Si alloy. 展开更多
关键词 Aluminium alloys Las powder-bed fusion crack elimination Mechanical properties
原文传递
Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld 被引量:6
10
作者 Yifeng Li Jianqiu Wang +2 位作者 En-Hou Han Wenbo Wu Hannu Hanninen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期545-559,共15页
A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properti... A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properties and corrosion behavior in simulated primary water of DDC/DCZ were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM), 3 D X-ray tomography(XRT), 3 D atom probe(3 DAP), slow strain rate tensile(SSRT) testing and thermal dilatometry. The results indicate that DDCs are random-shaped and disc-like cavities with corrugated structure of inner surface and are parallel in groups along straight high-angle boundaries of columnar grains, ranging from micrometers to millimeters in size. Large-size M_(23)C_6 carbides dominate on the grain boundaries rather than MC(M=Nb, Ti), and thus the bonding effect of carbides is absent for the straight grain boundaries.The impurity segregation of O is confirmed for the inner surfaces of DDC. The oxide film formed on the inner surface of DDC(about 50 nm) is approximately twice as thick as that on the matrix(about 25 nm)in simulated primary water. The yield strength, tensile strength and elongation to fracture of 52 MwDCZ(400 MPa, 450 MPa and 20 %, respectively) are lower than those of 52 Mw-MZ(460 MPa, 550 MPa and 28 %, respectively). The intrinsic high-restraint weld structure, the additional stress/strain caused by the thermal expansion difference between AISI 316 L and 52 Mw as well as the detrimental carbide precipitation and the resulting grain boundary structure all add up to cause the occurrence of DCZ in the dissimilar metal weld. 展开更多
关键词 Dissimilar metal weld Nickel-base alloy Ductility-dip cracking(DDC) Slow strain rate tensile(SSRT) testing Thermal expansion coefficient
原文传递
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
11
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation multi-scale Production prediction Adsorbed/free gas ratio
原文传递
Influence of surface layer slurry temperature on surface cracks and holes of ZTC4 titanium alloy by investment casting 被引量:1
12
作者 Wei-dong Li Xu-na Shi 《China Foundry》 2025年第1期90-98,共9页
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest... In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes. 展开更多
关键词 titanium alloy surface layer slurry surface cracks surface holes investment casting
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
13
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
14
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
15
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
Bridge Crack Segmentation Method Based on Parallel Attention Mechanism and Multi-Scale Features Fusion 被引量:1
16
作者 Jianwei Yuan Xinli Song +2 位作者 Huaijian Pu Zhixiong Zheng Ziyang Niu 《Computers, Materials & Continua》 SCIE EI 2023年第3期6485-6503,共19页
Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vi... Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vision-based automatic crack detection algorithms,it is challenging to detect fine cracks and balance the detection accuracy and speed.Therefore,this paper proposes a new bridge crack segmentationmethod based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+network framework.First,the improved lightweight MobileNetv2 network and dilated separable convolution are integrated into the original DeeplabV3+network to improve the original backbone network Xception and atrous spatial pyramid pooling(ASPP)module,respectively,dramatically reducing the number of parameters in the network and accelerates the training and prediction speed of the model.Moreover,we introduce the parallel attention mechanism into the encoding and decoding stages.The attention to the crack regions can be enhanced from the aspects of both channel and spatial parts and significantly suppress the interference of various noises.Finally,we further improve the detection performance of the model for fine cracks by introducing a multi-scale features fusion module.Our research results are validated on the self-made dataset.The experiments show that our method is more accurate than other methods.Its intersection of union(IoU)and F1-score(F1)are increased to 77.96%and 87.57%,respectively.In addition,the number of parameters is only 4.10M,which is much smaller than the original network;also,the frames per second(FPS)is increased to 15 frames/s.The results prove that the proposed method fits well the requirements of rapid and accurate detection of bridge cracks and is superior to other methods. 展开更多
关键词 crack detection DeeplabV3+ parallel attention mechanism feature fusion
在线阅读 下载PDF
The Role of Multi-scale Integrated Hierarchical Intervention in Preventing Psychological Crises among College Students
17
作者 XIONG Jun ZHAO Xiaoqing +3 位作者 SHUAI Yixin FENG Yuqi ZHUGE Junzhe LUO Jiaming 《贵州大学学报(自然科学版)》 2025年第4期18-25,共8页
Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a co... Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities. 展开更多
关键词 multi-scale hierarchical intervention preventing psychological crises
在线阅读 下载PDF
Multi-scale modeling of the multi-phase flow in water electrolyzers for green hydrogen production
18
作者 Lizhen Wu Qing Wang +2 位作者 Wenzhi Li Mingcong Tang Liang An 《Materials Reports(Energy)》 2025年第3期40-49,共10页
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This... Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production. 展开更多
关键词 Water electrolyzers Bubble dynamics multi-scale MULTI-PHASE MODELING
在线阅读 下载PDF
Deep Learning-Based Identification of Cracks Using Ultrasonic Phased-Array Images
19
作者 Lijuan Yang Huan Liu +3 位作者 Desheng Wu Zhibo Yang Xuefeng Chen Shaohua Tian 《Acta Mechanica Solida Sinica》 2025年第5期803-814,共12页
In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify... In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved. 展开更多
关键词 crack damage Deep convolutional neural network Ultrasonic phased-array image Automatic crack recognition
原文传递
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
20
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部