期刊文献+
共找到5,928篇文章
< 1 2 250 >
每页显示 20 50 100
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
1
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
2
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
Power Quality Disturbance Identification Basing on Adaptive Kalman Filter andMulti-Scale Channel Attention Fusion Convolutional Network
3
作者 Feng Zhao Guangdi Liu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第7期1865-1882,共18页
In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a... In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification. 展开更多
关键词 Power quality disturbance kalman filtering convolutional neural network attention mechanism
在线阅读 下载PDF
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation 被引量:1
4
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
5
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
3D medical image segmentation using the serial-parallel convolutional neural network and transformer based on crosswindow self-attention 被引量:1
6
作者 Bin Yu Quan Zhou +3 位作者 Li Yuan Huageng Liang Pavel Shcherbakov Xuming Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期337-348,共12页
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu... Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance. 展开更多
关键词 convolution neural network cross window self‐attention medical image segmentation transformer
在线阅读 下载PDF
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
7
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(GAN) multi-scale convolution
在线阅读 下载PDF
Microseismic Event Recognition and Transfer Learning Based on Convolutional Neural Network and Attention Mechanisms
8
作者 Jin Shu Zhang Shichao +2 位作者 Gao Ya Yu Benli Zhen Shenglai 《Applied Geophysics》 2025年第4期1220-1232,1497,共14页
Microseismic monitoring technology is widely used in tunnel and coal mine safety production.For signals generated by ultra-weak microseismic events,traditional sensors encounter limitations in terms of detection sensi... Microseismic monitoring technology is widely used in tunnel and coal mine safety production.For signals generated by ultra-weak microseismic events,traditional sensors encounter limitations in terms of detection sensitivity.Given the complex engineering environment,automatic multi-classification of microseismic data is highly required.In this study,we use acceleration sensors to collect signals and combine the improved Visual Geometry Group with a convolutional block attention module to obtain a new network structure,termed CNN_BAM,for automatic classification and identification of microseismic events.We use the dataset collected from the Hanjiang-to-Weihe River Diversion Project to train and validate the network model.Results show that the CNN_BAM model exhibits good feature extraction ability,achieving a recognition accuracy of 99.29%,surpassing all its counterparts.The stability and accuracy of the classification algorithm improve remarkably.In addition,through fine-tuning and migration to the Pan Ⅱ Mine Project,the network demonstrates reliable generalization performance.This outcome reflects its adaptability across different projects and promising application prospects. 展开更多
关键词 Microseismic convolutional Neural Networks MULTI-CLASSIFICATION attentional mechanism Transfer learning
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
9
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
MA-VoxelMorph:Multi-scale attention-based VoxelMorph for nonrigid registration of thoracoabdominal CT images
10
作者 Qing Huang Lei Ren +3 位作者 Tingwei Quan Minglei Yang Hongmei Yuan Kai Cao 《Journal of Innovative Optical Health Sciences》 2025年第1期135-151,共17页
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz... This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries. 展开更多
关键词 Thoracoabdominal CT image registration large deformation fine structure multi-scale attention mechanism
原文传递
Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network
11
作者 Yunho Na Munsu Jeon +4 位作者 Seungmin Joo Junsoo Kim Ki-Yong Oh Min Ku Kim Joon-Young Park 《Computer Modeling in Engineering & Sciences》 2025年第7期1013-1044,共32页
This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits thre... This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits three key characteristics.First,virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images.This enables the neural network to learn various features of transmission facilities to improve the detection performance.Second,the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps,enabling the neural network to perform precise object detection in various environments.Third,an effective bounding box optimization method called Scylla-IoU is deployed on FAMSR-Net,considering the intersection over union,center point distance,angle,and shape of the bounding box.This enables the detection of power facilities of various sizes accurately.Extensive experiments demonstrated that FAMSRNet outperforms other neural networks in detecting power facilities.FAMSR-Net also achieved the highest detection accuracy when virtual images of the transmission facilities were co-trained in the training phase.The proposed framework is effective for the scheduled operation and maintenance of transmission facilities because an optical camera is currently the most promising tool for unmanned aerial vehicles.This ultimately contributes to improved inspection efficiency,reduced maintenance risks,and more reliable power delivery across extensive transmission facilities. 展开更多
关键词 Object detection virtual image transmission facility convolutional block attention module Scylla-IoU
在线阅读 下载PDF
AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network
12
作者 Ya-Jie Sun Li-Wei Qiao Sai Ji 《Computers, Materials & Continua》 2025年第7期1769-1785,共17页
Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c... Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues. 展开更多
关键词 Vehicle re-identification a lightweight attention module global features local features graph convolution network
在线阅读 下载PDF
Deep Multi-Scale and Attention-Based Architectures for Semantic Segmentation in Biomedical Imaging
13
作者 Majid Harouni Vishakha Goyal +2 位作者 Gabrielle Feldman Sam Michael Ty C.Voss 《Computers, Materials & Continua》 2025年第10期331-366,共36页
Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional a... Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research. 展开更多
关键词 Biomedical semantic segmentation multi-scale feature fusion fine-and coarse-scale features convolution operations shallow and deep blocks skip connections
在线阅读 下载PDF
Marine organism classification method based on hierarchical multi-scale attention mechanism
14
作者 XU Haotian CHENG Yuanzhi +1 位作者 ZHAO Dong XIE Peidong 《Optoelectronics Letters》 2025年第6期354-361,共8页
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie... We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification. 展开更多
关键词 integrate information different scales hierarchical multi scale attention lightweight feature extraction focal loss efficientnetv marine organism classification oceanic biological image classification methods convolutional block attention module
原文传递
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
15
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention multi-scale Neural network
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
16
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
基于MSCNN+Attention模型的轴承故障诊断方法研究
17
作者 付志鹏 么洪飞 《齐齐哈尔大学学报(自然科学版)》 2026年第1期9-16,43,共9页
针对传统故障诊断方法特征提取能力不足以及诊断精度低的问题,提出一种融合通道注意力与自注意力机制的轴承故障诊断模型。该模型通过多层卷积与注意力机制提取关键特征,并利用自注意力模块进行全局特征融合,构建残差结构增强特征表达能... 针对传统故障诊断方法特征提取能力不足以及诊断精度低的问题,提出一种融合通道注意力与自注意力机制的轴承故障诊断模型。该模型通过多层卷积与注意力机制提取关键特征,并利用自注意力模块进行全局特征融合,构建残差结构增强特征表达能力,诊断模型通过Softmax分类器识别故障。通过凯斯西储大学的轴承数据验证窗口长度与优化器选择的合理性,结果表明,当窗口长度为1024,采用Adam优化器(学习率0.001)时模型性能最佳。通过准确率、ROC曲线和混淆矩阵指标对模型性能进行全面评估。实验结果显示,模型的故障识别准确率达99.4%~100%,显著优于RF模型(96.8%)、GRU模型(97.5%)和LSTM模型(92.3%),在窗口长度为1024时,分类准确率提升最明显,且AUC均超过0.99,综合分析表明该模型的特征提取能力和诊断精度相比传统模型显著提升。 展开更多
关键词 注意力机制 滚动轴承 特征提取 卷积神经网络
在线阅读 下载PDF
Blur-Deblur Algorithm for Pressure-Sensitive Paint Image Based on Variable Attention Convolution
18
作者 Ruizhe Yu Tingrui Yue +1 位作者 Lei Liang Zhisheng Gao 《Computers, Materials & Continua》 2025年第3期5239-5256,共18页
In the PSP(Pressure-Sensitive Paint),image deblurring is essential due to factors such as prolonged camera exposure times and highmodel velocities,which can lead to significant image blurring.Conventional deblurring m... In the PSP(Pressure-Sensitive Paint),image deblurring is essential due to factors such as prolonged camera exposure times and highmodel velocities,which can lead to significant image blurring.Conventional deblurring methods applied to PSP images often suffer from limited accuracy and require extensive computational resources.To address these issues,this study proposes a deep learning-based approach tailored for PSP image deblurring.Considering that PSP applications primarily involve the accurate pressure measurements of complex geometries,the images captured under such conditions exhibit distinctive non-uniform motion blur,presenting challenges for standard deep learning models utilizing convolutional or attention-based techniques.In this paper,we introduce a novel deblurring architecture featuring multiple DAAM(Deformable Ack Attention Module).These modules provide enhanced flexibility for end-to-end deblurring,leveraging irregular convolution operations for efficient feature extraction while employing attention mechanisms interpreted as multiple 1×1 convolutions,subsequently reassembled to enhance performance.Furthermore,we incorporate a RSC(Residual Shortcut Convolution)module for initial feature processing,aimed at reducing redundant computations and improving the learning capacity for representative shallow features.To preserve critical spatial information during upsampling and downsampling,we replace conventional convolutions with wt(Haar wavelet downsampling)and dysample(Upsampling by Dynamic Sampling).This modification significantly enhances high-precision image reconstruction.By integrating these advanced modules within an encoder-decoder framework,we present the DFDNet(Deformable Fusion Deblurring Network)for image blur removal,providing robust technical support for subsequent PSP data analysis.Experimental evaluations on the FY dataset demonstrate the superior performance of our model,achieving competitive results on the GOPRO and HIDE datasets. 展开更多
关键词 Pressure-sensitive paint deep learning image deblurring typeset variable attention convolution
在线阅读 下载PDF
Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection
19
作者 Guorong Qi Jian Mao +2 位作者 Kai Huang Zhengxian You Jinliang Lin 《Computers, Materials & Continua》 2025年第2期2159-2176,共18页
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc... Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance. 展开更多
关键词 Network traffic anomaly detection multi-head attention parallel dilated convolution residual learning
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
20
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部