期刊文献+
共找到37,228篇文章
< 1 2 250 >
每页显示 20 50 100
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:12
1
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
在线阅读 下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:3
2
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction multi-scale convolutional neural networks Gated recurrent unit
在线阅读 下载PDF
DDoS Attack Detection via Multi-Scale Convolutional Neural Network 被引量:2
3
作者 Jieren Cheng Yifu Liu +3 位作者 Xiangyan Tang Victor SSheng Mengyang Li Junqi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1317-1333,共17页
Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.... Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.In this paper,we propose a DDoS attack detection method based on network flow grayscale matrix feature via multi-scale convolutional neural network(CNN).According to the different characteristics of the attack flow and the normal flow in the IP protocol,the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary.Based on the network flow grayscale matrix feature(GMF),the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation,global features and local features of the network flow are extracted.A DDoS attack classifier based on multi-scale convolution neural network is constructed.Experiments show that compared with correlation methods,this method can improve the robustness of the classifier,reduce the false alarm rate and the missing alarm rate. 展开更多
关键词 DDoS attack detection convolutional neural network network flow feature extraction
在线阅读 下载PDF
Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition 被引量:1
4
作者 Chang Zhang Ruiwen Ni +2 位作者 Ye Mu Yu Sun Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2023年第1期983-994,共12页
In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of ... In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of pattern recognition.The research and development of high-efficiency,highquality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective.This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network(CNN)model and proposes a recognitionmodel that combines amulti-scale convolution module with a neural network model based on Visual Geometry Group(VGG).The accuracy and loss of the training set and the test set are used to evaluate the performance of the model.The test accuracy of this model is 97.1%that has increased 5.87%over VGG.Furthermore,the memory requirement is 26.1M,only 1.6%of the VGG.Experiment results show that this model performs better in terms of accuracy,recognition speed and memory size. 展开更多
关键词 Rice leaf diseases deep learning lightweight convolution neural networks VGG
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
5
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
6
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Using Multi-Scale Convolution Fusion and Memory-Augmented Adversarial Autoencoder to Detect Diverse Anomalies in Multivariate Time Series
7
作者 Zefei Ning Hao Miao +1 位作者 Zhuolun Jiang Li Wang 《Tsinghua Science and Technology》 2025年第1期234-246,共13页
Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great progress.However,due to complex device interactions,time series exhibit dive... Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great progress.However,due to complex device interactions,time series exhibit diverse abnormal signal shapes,subtle anomalies,and imbalanced abnormal instances,which make anomaly detection in time series still a challenge.Fusion and analysis of multivariate time series can help uncover their intrinsic spatio-temporal characteristics,and contribute to the discovery of complex and subtle anomalies.In this paper,we propose a novel approach named Multi-scale Convolution Fusion and Memory-augmented Adversarial AutoEncoder(MCFMAAE)for multivariate time series anomaly detection.It is an encoder-decoder-based framework with four main components.Multi-scale convolution fusion module fuses multi-sensor signals and captures various scales of temporal information.Self-attention-based encoder adopts the multi-head attention mechanism for sequence modeling to capture global context information.Memory module is introduced to explore the internal structure of normal samples,capturing it into the latent space,and thus remembering the typical pattern.Finally,the decoder is used to reconstruct the signals,and then a process is coming to calculate the anomaly score.Moreover,an additional discriminator is added to the model,which enhances the representation ability of autoencoder and avoids overfitting.Experiments on public datasets demonstrate that MCFMAAE improves the performance compared to other state-of-the-art methods,which provides an effective solution for multivariate time series anomaly detection. 展开更多
关键词 multivariate time series anomaly detection AutoEncoder(AE) multi-scale fusion
原文传递
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
8
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions 被引量:10
9
作者 JIN YanRui QIN ChengJin +2 位作者 ZHANG ZhiNan TAO JianFeng LIU ChengLiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2551-2563,共13页
Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has... Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has two limitations:(1)the complex and changeable environmental noise,which cannot ensure the high-performance diagnosis of the model in different noise domains and(2)the possibility of multiple faults occurring simultaneously,which brings challenges to the model diagnosis.This paper presents a novel anti-noise multi-scale convolutional neural network(AM-CNN)for solving the issue of compound fault diagnosis under different intensity noises.First,we propose a residual pre-processing block according to the principle of noise superposition to process the input information and present the residual loss to construct a new loss function.Additionally,considering the strong coupling of input information,we design a multi-scale convolution block to realize multi-scale feature extraction for enhancing the proposed model’s robustness and effectiveness.Finally,a multi-label classifier is utilized to simultaneously distinguish multiple bearing faults.The proposed AM-CNN is verified under our collected compound fault dataset.On average,AM-CNN improves 39.93%accuracy and 25.84%F1-macro under the no-noise working condition and 45.67%accuracy and 27.72%F1-macro under different intensity noise working conditions compared with the existing methods.Furthermore,the experimental results show that AM-CNN can achieve good cross-domain performance with 100%accuracy and 100%F1-macro.Thus,AM-CNN has the potential to be an accurate and stable fault diagnosis tool. 展开更多
关键词 ANTI-NOISE residual pre-processing block bearing compound fault multi-label classifier multi-scale convolution feature extraction
原文传递
An efficient projection defocus algorithm based on multi-scale convolution kernel templates 被引量:1
10
作者 Bo ZHU Li-jun XIE +1 位作者 Guang-hua SONG Yao ZHENG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第12期930-940,共11页
The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects an... The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception. 展开更多
关键词 Projection focal Sobel-Tenengrad evaluation function Projector defocus multi-scale convolution kernels
原文传递
Land cover classification from remote sensing images based on multi-scale fully convolutional network 被引量:17
11
作者 Rui Li Shunyi Zheng +2 位作者 Chenxi Duan Libo Wang Ce Zhang 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期278-294,共17页
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos... Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN. 展开更多
关键词 Spatio-temporal remote sensing images multi-scale Fully convolutional Network land cover classification
原文传递
Convolution-based multi-scale envelope inversion 被引量:4
12
作者 Ding-Jin Liu Jian-Ping Huang Zi-Ying Wang 《Petroleum Science》 SCIE CAS CSCD 2020年第2期352-362,共11页
Envelope inversion(El)is an efficient tool to mitigate the nonlinearity of conventional full waveform inversion(FWI)by utilizing the ultralow-frequency component in the seismic data.However,the performance of envelope... Envelope inversion(El)is an efficient tool to mitigate the nonlinearity of conventional full waveform inversion(FWI)by utilizing the ultralow-frequency component in the seismic data.However,the performance of envelope inversion depends on the frequency component and initial model to some extent.To improve the convergence ability and avoid the local minima issue,we propose a convolution-based envelope inversion method to update the low-wavenumber component of the velocity model.Besides,the multi-scale inversion strategy(MCEI)is also incorporated to improve the inversion accuracy while guaranteeing the global convergence.The success of this method relies on modifying the original envelope data to expand the overlap region between observed and modeled envelope data,which in turn expands the global minimum basin of misfit function.The accurate low-wavenumber component of the velocity model provided by MCEI can be used as the migration model or an initial model for conventional FWI.The numerical tests on simple layer model and complex BP 2004 model verify that the proposed method is more robust than El even when the initial model is coarse and the frequency component of data is high. 展开更多
关键词 Full waveform inversion multi-scale strategy Envelope inversion
原文传递
Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network 被引量:2
13
作者 Rouhui Wu Yizhu Ren +1 位作者 Mengying Tan Lei Nie 《Building Simulation》 SCIE EI CSCD 2024年第3期371-386,共16页
Accurate fault diagnosis of heating,ventilation,and air conditioning(HVAC)systems is of significant importance for maintaining normal operation,reducing energy consumption,and minimizing maintenance costs.However,in p... Accurate fault diagnosis of heating,ventilation,and air conditioning(HVAC)systems is of significant importance for maintaining normal operation,reducing energy consumption,and minimizing maintenance costs.However,in practical applications,it is challenging to obtain sufficient fault data for HVAC systems,leading to imbalanced data,where the number of fault samples is much smaller than that of normal samples.Moreover,most existing HVAC system fault diagnosis methods heavily rely on balanced training sets to achieve high fault diagnosis accuracy.Therefore,to address this issue,a composite neural network fault diagnosis model is proposed,which combines SMOTETomek,multi-scale one-dimensional convolutional neural networks(M1DCNN),and support vector machine(SVM).This method first utilizes SMOTETomek to augment the minority class samples in the imbalanced dataset,achieving a balanced number of faulty and normal data.Then,it employs the M1DCNN model to extract feature information from the augmented dataset.Finally,it replaces the original Softmax classifier with an SVM classifier for classification,thus enhancing the fault diagnosis accuracy.Using the SMOTETomek-M1DCNN-SVM method,we conducted fault diagnosis validation on both the ASHRAE RP-1043 dataset and experimental dataset with an imbalance ratio of 1:10.The results demonstrate the superiority of this approach,providing a novel and promising solution for intelligent building management,with accuracy and F1 scores of 98.45%and 100%for the RP-1043 dataset and experimental dataset,respectively. 展开更多
关键词 fault diagnosis CHILLER imbalanced data SMOTETomek multi-scale neural networks
原文传递
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
14
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network Depthwise Dilated Separable convolution Hierarchical multi-scale Feature Fusion
在线阅读 下载PDF
Pedestrian attribute classification with multi-scale and multi-label convolutional neural networks
15
作者 朱建清 Zeng Huanqiang +2 位作者 Zhang Yuzhao Zheng Lixin Cai Canhui 《High Technology Letters》 EI CAS 2018年第1期53-61,共9页
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c... Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin. 展开更多
关键词 PEDESTRIAN ATTRIBUTE CLASSIFICATION multi-scale features MULTI-LABEL CLASSIFICATION convolutional NEURAL network (CNN)
在线阅读 下载PDF
Multi-Scale Blind Image Quality Predictor Based on Pyramidal Convolution 被引量:2
16
作者 Feng Yuan Xiao Shao 《Journal on Big Data》 2020年第4期167-176,共10页
Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer visi... Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer vision tasks,many IQA methods start to utilize the deep convolutional neural networks(CNN)for IQA task.In this paper,a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution,which consists of two tasks:A distortion recognition task and a quality regression task.For the first task,image distortion type is obtained by the fully connected layer.For the second task,the image quality score is predicted during the distortion recognition progress.Experimental results on three famous IQA datasets show that the proposed method has better performance than the previous traditional algorithms for quality prediction and distortion recognition. 展开更多
关键词 No-reference image quality assessment(NR-IQA) convolutional neural network deep learning feature extraction image distortion recognition
在线阅读 下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
17
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention multi-scale Neural network
在线阅读 下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network 被引量:1
18
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
在线阅读 下载PDF
Power Quality Disturbance Identification Basing on Adaptive Kalman Filter andMulti-Scale Channel Attention Fusion Convolutional Network
19
作者 Feng Zhao Guangdi Liu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第7期1865-1882,共18页
In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a... In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification. 展开更多
关键词 Power quality disturbance kalman filtering convolutional neural network attention mechanism
在线阅读 下载PDF
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
20
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(GAN) multi-scale convolution
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部