期刊文献+
共找到752篇文章
< 1 2 38 >
每页显示 20 50 100
An Accurate Modeling Approach of Contact Stiffness in Milling Tool-holder Interface Using Fractal Theory
1
作者 Yawei Zheng Zhengcai Zhao +1 位作者 Yang Zhou Jiuhua Xu 《Chinese Journal of Mechanical Engineering》 2025年第3期137-150,共14页
The contact stiffness of the tool-holder assembly interface affects the overall dynamic performance of the milling system.Currently,the contact parameters are primarily established by minimizing the frequency response... The contact stiffness of the tool-holder assembly interface affects the overall dynamic performance of the milling system.Currently,the contact parameters are primarily established by minimizing the frequency response in modal tests and through dynamic simulation results.However,alterations in the structure or material of the tool-holder system necessitate multiple modal tests,thereby increasing computational costs.This study aims to streamline the process of determining contact stiffness and enhance accuracy by developing an analytical model that considers tool-holder contact properties.Initially,the microstructure of the contact surface is characterized via fractal theory to determine its fractal parameters.Then the contact coefficient is introduced to precisely depict the area distribution function of the microcontact.Building upon this,a contact stiffness model is established which is verified by the modal tests.The test results indicate that utilizing this model can reduce the structural modal frequency calculation error to 0.56%.Finally,the Monte Carlo algorithm is employed to investigate the sensitivity of fractal parameters and radial interference on contact characteristics.The findings demonstrate that the fractal dimension has the greatest influence on the dynamic behavior of the tool-holder structure.This study proposes a milling tool-holder contact stiffness modeling method from a microscopic perspective,which offers sufficient computational accuracy to provide a theoretical basis for the selection of milling tool-holder structures in practical machining. 展开更多
关键词 Tool-holder interface contact stiffness Fractal theory Uncertainty analysis
在线阅读 下载PDF
Cutting force prediction model considering tool-chip contact interface friction behavior in ULTVAM of Ti-6Al-4V
2
作者 Junjin MA Yujie ZHANG +5 位作者 Yujie LI Chenwei SHAN Feng JIAO Guofu GAO Dinghua ZHANG Bo ZHAO 《Chinese Journal of Aeronautics》 2025年第6期621-641,共21页
Ti-6Al-4V is widely used in the aviation industry because of its high strength, and good heat resistance. However, severe tool wear on the rake face occurs during the milling of Ti-6Al-4V,which is caused by intense fr... Ti-6Al-4V is widely used in the aviation industry because of its high strength, and good heat resistance. However, severe tool wear on the rake face occurs during the milling of Ti-6Al-4V,which is caused by intense friction between the tool rake face and the chips. To investigate tool wear in the milling of Ti-6Al-4V, ultrasonic vibration is introduced, and a cutting force prediction model that considers tool-chip contact interface friction behavior in Ultrasonic Longitudinal-Torsional Vibration-Assisted Milling(ULTVAM) is proposed in this paper. First, the tool tip motion trajectory and dynamic cutting thickness under ULTVAM were analyzed calculated, and compared with those in Common Milling(CM). Subsequently, the effects of ultrasonic vibration on the shear force under the ultrasonic softening effect, the friction force, and the friction reversal force on the toolchip contact interface were investigated. A dynamic milling force model under ULTVAM was established before and after friction force reversal caused by ultrasonic longitudinal-torsional vibration. Finally, numerous experiments were conducted to validate the proposed model, and the experimental results indicated that the calculated dynamic milling forces agreed well with the measured values, with errors in the X and Y directions of 5.51% and 10.23%, respectively. In addition, the average roughness of the workpiece surface also decreased(1.08, 0.9, 0.6, 0.7 μm under ultrasonic amplitudes of 0, 1, 2, and 3 μm) and the tool wear state improved on the rake face under ULTVAM. 展开更多
关键词 Ultrasonic longitudinaltorsional vibration Milling forcemodel Friction behavior on toolchip contact interface Tool wear MILLING
原文传递
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator 被引量:1
3
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 contact electrification interfaceS Triboelectric nanogenerators Diversified applications
在线阅读 下载PDF
Phase change thermal interface materials:From principles to applications and beyond
4
作者 Chenggong Zhao Yifan Li +4 位作者 Chen Jiang Yuanzheng Tang Yan He Wei Yu Bingyang Cao 《Chinese Physics B》 2025年第9期386-402,共17页
Phase change thermal interface materials(PC-TIMs)have emerged as a promising solution to address the increasing thermal management challenges in electronic devices.This is attributed to their dual mechanisms of latent... Phase change thermal interface materials(PC-TIMs)have emerged as a promising solution to address the increasing thermal management challenges in electronic devices.This is attributed to their dual mechanisms of latent heat absorption and phase change-induced interfacial wettability.This review explores the fundamental principles,material innovations,and diverse applications of PC-TIMs.The heat transfer enhancement mechanisms are first underlined with key factors such as thermal carrier mismatch at the microscale and contact geometry at the macroscale,emphasizing the importance of material selection and design for optimizing thermal performance.Section 2 focuses on corresponding experimental approaches provided,including intrinsic thermal conductivity improvements and interfacial heat transfer optimization.Section 3 discusses common methods such as physical adsorption via porous materials,chain-crosslinked network designs,and core-shell structures,and their effects on leakage prevention,heat transfer enhancement,and application flexibility.Furthermore,the extended applications of PC-TIMs in thermal energy storage are explored in Section 4,suggesting their potential in diverse technological fields.The current challenges in interfacial heat transfer research and the prospect of PC-TIMs are also discussed.The data-driven machine learning technologies will play an increasingly important role in addressing material development and performance prediction. 展开更多
关键词 phase change thermal interface materials contact thermal resistance interfacial heat transfer ENCAPSULATION
原文传递
Printable hole-conductor-free mesoscopic perovskite solar cells coupled with an ultra-thin ZrO_(2) interface layer for improved performance
5
作者 Kai Chen Jinwei Gong +8 位作者 Jiale Liu Jianhang Qi Qiaojiao Gao Yongming Ma Yanjie Cheng Wenjing Hu Junwei Xiang Anyi Mei Hongwei Han 《Journal of Energy Chemistry》 2025年第10期762-768,共7页
Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-t... Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-thin ZrO_(2)insulating interface layer onto the inner surface of the mesoporous TiO_(2)ETL via the chemical bath deposition in the zirconium n-butoxide solution,which alters the interface characteristics between TiO_(2)and perovskite for the printable hole-conductor-free mesoscopic perovskite solar cells(p-MPSCs).The insulating ZrO_(2)interface layer reduces interface defects and suppresses interfacial non-radiative recombination.Furthermore,the ZrO_(2)interface layer improves the wettability of the mesoporous TiO_(2)ETL,which favors the crystallization of perovskite within the mesoporous scaffold.Meanwhile,the device performance presents thickness dependence on the interface layer.While increased thickness improves the open-circuit voltage,excessive thickness negatively impacts both the short-circuit current density and fill factor.Consequently,an improved power conversion efficiency of 19.9% was achieved for p-MPSCs with the ZrO_(2)interface layer at its optimized thickness. 展开更多
关键词 Printable hole-conductor-free mesoscopic perovskite solarcells Electron transport layer Insulation contact Ultra-thin ZrO_(2)interface layer Wettability
在线阅读 下载PDF
Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers
6
作者 Xu Li Yue Zhao Tingli Ma 《Chinese Journal of Structural Chemistry》 2025年第2期1-2,共2页
High-performance lithium metal batteries benefit from the construction of composite polymer electrolytes(CPEs)which are synthesized by incorporating inorganic fillers into polymer matrices[1].However,the random distri... High-performance lithium metal batteries benefit from the construction of composite polymer electrolytes(CPEs)which are synthesized by incorporating inorganic fillers into polymer matrices[1].However,the random distribution of added fillers within the polymer matrix can lead to tortuous ion pathways and longer transmission distances(Fig.1).As a result,the ion transport capability of CPEs may decrease,while interface contact may deteriorate.Therefore,the organized arrangement of fillers emerges as a crucial consideration in constructing electrolyte membranes.One highly effective approach is the adoption of a vertically aligned filler configuration,where ceramic fillers are constructed to be perpendicular to the electrolyte membrane.If so,the filler/electrolyte interface impedance can be significantly reduced,while continuous ion transport channels along the specified direction are formed,thus significantly enhancing the ion conduction(Fig.1(a))[1]. 展开更多
关键词 polymer matrix composite polymer electrolytes composite polymer electrolytes cpes which incorporating inorganic fillers polymer matrices howeverthe lithium metal batteries vertically aligned fillers interface contact ion transport
原文传递
Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact
7
作者 Zhiqiang Gao Yu Zhang +4 位作者 Xian Wei Yanfang Zhu Lixia Peng Weiping Fu Wen Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期109-123,共15页
Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most ca... Elastohydrodynamic lubrication(EHL)point contact occurs between two rough surfaces at the mesoscopic level,while the interaction of rough surfaces involves contact between asperities at the microscale level.In most cases,the contact between asperities within an interface takes the form of lateral contact rather than peak contact.Regions devoid of contact asperities are filled with lubricating oil.However,conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth,rigid plane.These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance.To address this issue,we have developed a novel EHL interface model comprising two rough surfaces.This model allows us to explore the influence of asperity height,contact angle,and contact azimuth angle on EHL interface performance. 展开更多
关键词 EHL interface Asperity lateral contact contact stiffness DAMPING
原文传递
Optimization Analysis of Sliding Electrical Contact Interface Based on Electromechanical Coupling
8
作者 Pengfei Yue Jiahe Ma +1 位作者 Ronghao Shi Kexing Song 《Journal of Applied Mathematics and Physics》 2024年第11期4030-4041,共12页
This work addresses the critical issue of current density distribution in the sliding electrical contact interface based on electromechanical coupling, which is essential for minimizing damage and enhancing performanc... This work addresses the critical issue of current density distribution in the sliding electrical contact interface based on electromechanical coupling, which is essential for minimizing damage and enhancing performance. Using electromechanical coupling analysis and finite element analysis (FEA), the effects of initial contact pressure, pulse current input, and armature speed on current density are examined. Key findings indicate that optimizing the convex rail and armature structures significantly reduces peak current density, improving uniformity and reducing damage. These optimizations enhance the efficiency, accuracy, and service life of sliding electrical contact interfaces, providing a theoretical foundation for designing more durable and efficient high-current-density applications. 展开更多
关键词 Sliding contact interface Electromagnetic Propulsion Current Density Distribution Finite Element Analysis
在线阅读 下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries 被引量:1
9
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 Solid-state lithium–sulfur batteries Solid-state electrolytes Electrode/electrolyte interface interfacial engineering Enhancing interfacial contact
在线阅读 下载PDF
Review and propositions for the sliding/impact wear behavior in a contact interface 被引量:7
10
作者 Yunxia CHEN Wenjun GONG Rui KANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期391-406,共16页
A thermal-solid-liquid complex operational environment induces structural interface developing a typical coupling sliding/impact wear behavior.It results in contact damage until systems fail,which may cause significan... A thermal-solid-liquid complex operational environment induces structural interface developing a typical coupling sliding/impact wear behavior.It results in contact damage until systems fail,which may cause significant economic losses and catastrophic consequences.The key point of solving this problem is to reveal the coupling damage mechanism of the sliding/impact behavior in typical systems and life characterization under a complicate evolving environment.This has been a hot topic in the area of mechanical reliability.The main work in this paper can be concluded as follows.Firstly,the main industries in which the"sliding/impact behavior"takes place have been introduced.Then,existing studies on the wear mechanism and degree analysis are presented,which includes surface morphology analysis,wear debris analysis,and wear degree measurement.Meanwhile,existing problems in theoretical modeling and experiments in current research are summarized,so as to point out a bright direction for future research on wear prediction.They include interface contact modeling,mathematic coupling mechanism modeling,wear equation establishment,and wear life characterization,which can provide some new ideas for improving the existing studies on the sliding/impact wear behavior. 展开更多
关键词 contact interface Coupling mechanism LIFE prediction Sliding/impact WEAR BEHAVIOR WEAR EQUATION
原文传递
Spin Polarization at Organic-Ferromagnetic Interface: Effect of Contact Configuration
11
作者 李营 张广平 +4 位作者 谢震 张朝 任俊峰 王传奎 胡贵超 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期344-348,I0002,共6页
Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The res... Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The results demonstrate a strong dependence of the interfacial spin polarization on the contact configuration, where the sign of spin polarization may vary from positive to negative with the change of contact configuration. By analyzing the projected density of states, an interracial orbital hybridization between the 3d orbital of the nickel atom and the sp3 hybridized orbital of the sulfur atom is observed. We also simulated the interracial adsorption in mechanically controllable break junction experiments. The magne- toresistance obtained from Julliere model is about 27% based on the calculated interracial spin polarization, which is consistent with experimental measurement. 展开更多
关键词 Organic spintronics Spin polarization interface contact configuration
在线阅读 下载PDF
A METHOD FOR THE ANALYSIS OF DYNAMIC RESPONSE OF STRUCTURE CONTAINING NON-SMOOTH CONTACTABLE INTERFACES 被引量:3
12
作者 刘晶波 刘书 杜修力 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第1期63-72,共10页
A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a... A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a nonlinear boundary condition caused by the dynamic contact of interfaces. At the first level, an explicit method is adopted to calculate nodal displacements of global viscoelastic system without considering the effect of dynamic contact of interfaces and at the second level, by introducing contact conditions of interfaces, a group of equations of lower order is derived to calculate dynamic contact normal and shear forces on the interfaces. The method is convenient and efficient for the analysis of problems of dynamic contact. The accuracy of the method is of the second order and the numerical stability condition is wider than that of other explicit methods. 展开更多
关键词 non-smooth contactable interfaces visco-elastic structure dynamic response
在线阅读 下载PDF
Modeling Methods and Test Verification of Root Insert Contact Interface for Wind Turbine Blade 被引量:2
13
作者 Li Hui Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期9-15,共7页
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta... Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results. 展开更多
关键词 root insert modeling methods mesh optimization contact interface tension test
在线阅读 下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
14
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
在线阅读 下载PDF
BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE 被引量:1
15
作者 CHEN Juan HONG Jun ZHANG E LIANG Jian LU Bingheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期66-70,共5页
Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in... Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic indexes are mapped to biomechanical indexes like muscle stress-strain, the compression deformation of blood vessels and nerves etc. from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive test platform for sitting comfort of 3D adjustable contact interface is constructed. The test of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface. 展开更多
关键词 BIOMECHANICS contact interface FATIGUE Body pressure distribution
在线阅读 下载PDF
Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer
16
作者 Victor Kozlov Vladimir Saidakov Nikolai Kozlov 《Fluid Dynamics & Materials Processing》 EI 2024年第4期693-703,共11页
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I... The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries. 展开更多
关键词 ROTATION OSCILLATIONS immiscible fluids contact line interface film dynamic equilibrium Nomenclature frot
在线阅读 下载PDF
Diamond Film Synthesis with a DC Plasma Jet:Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature 被引量:1
17
作者 Rongfa CHEN Dunwen ZUO +2 位作者 Feng XU Duoseng LI Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期495-498,共4页
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are... The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure. 展开更多
关键词 Diamond film Substrate temperature contacting interface DC arc plasma jet
在线阅读 下载PDF
Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle 被引量:3
18
作者 Hongxin Zhang Lusheng Zhai +2 位作者 Ruoyu Liu Cong Yan Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期698-711,共14页
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow... In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP. 展开更多
关键词 Oil–water two-phase flow Curved interface Conductance parallel-wire array probes Dynamic contact angle
在线阅读 下载PDF
Back interface passivation for ultrathin Cu(In,Ga)Se_(2) solar cells with Schottky back contact: A trade-off of electrical effects 被引量:2
19
作者 涂野 李勇 殷官超 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期621-628,共8页
Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrat... Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrathin CIGSe solar cells with a Schottky back contact. In this work, theoretical explorations were conducted to study how the two contradictory electrical effects impact cell performance. For ultrathin CIGSe solar cells with a pronounced Schottky potential barrier(E_(h)> 0.2 eV), back interface passivation produces diverse performance evolution trends, which are highly dependent on cell structures and properties. Since a back Ga grading can screen the effect of reduced recombination of photogenerated electrons from back interface passivation, the hole blocking effect predominates and back interface passivation is not desirable. However, when the back Schottky diode merges with the main pn junction due to a reduced absorber thickness,the back potential barrier and the hole blocking effect is much reduced on this occasion. Consequently, cells exhibit the same efficiency evolution trend as ones with an Ohmic contact, where back interface passivation is always advantageous.The discoveries imply the complexity of back interface passivation and provide guidance to manipulate back interface for ultrathin CIGSe solar on TCOs with a pronounced Schottky back contact. 展开更多
关键词 ultrathin cigse solar cells Schottky back contact back interface passivation back recombination hole blocking
原文传递
Experimental analysis of interface contact behavior using a novel image processing method 被引量:1
20
作者 Jingyu Han Zhijun Luo +1 位作者 Yuling Zhang Shaoze Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期412-423,共12页
The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.How... The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface. 展开更多
关键词 real contact area total reflection method micro-contact spots interface contact experimental analysis
原文传递
上一页 1 2 38 下一页 到第
使用帮助 返回顶部