期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
1
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
2
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis
3
作者 Baoping Zou Chenhao Pei +3 位作者 Qizhi Chen Yansheng Deng Yongguo Chen Xu Long 《Computer Modeling in Engineering & Sciences》 2025年第3期2457-2485,共29页
The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatu... The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatures,pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields,including mechanical,thermal and hydraulic fields,during the fracturing of rocks.This review initially presents an overview of the coupling mechanisms of these physical fields,thereby elucidating the interaction processes ofmechanical,thermal,and hydraulic fields within rockmasses.Secondly,an in-depth analysis ofmulti-field coupling is conducted from both spatial and temporal perspectives,with the introduction of simulation methods for a range of scales.It emphasizes cross-scale coupling methodologies for the transfer of rock properties and physical field data,including homogenization techniques,nested coupling strategies and data-driven approaches.To address the discontinuous characteristics of the rock fracture process,the review provides a detailed explanation of continuousdiscontinuous couplingmethods,to elucidate the evolution of rock fracturing and deformationmore comprehensively.In conclusion,the review presents a summary of the principal points,challenges and future directions of multi-field coupling simulation research.It also puts forward the potential of integrating intelligent algorithms with multi-scale simulation techniques to enhance the accuracy and efficiency of multi-field coupling simulations.This offers novel insights into multi-field coupling simulation analysis in deep rock masses. 展开更多
关键词 Multi-field coupling numerical simulation multi-scale information transfer DISCONTINUITY
在线阅读 下载PDF
Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy 被引量:8
4
作者 W.L.Wang W.Q.Liu +2 位作者 X.Yang R.R.Xu Q.Y.Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期11-24,共14页
A model of coupling macro finite volume method(FVM) and cellular automata(CA) is proposed in this paper to explore the columnar-to-equiaxed transition(CET) during selective laser melting(SLM) of rare earth magnesium a... A model of coupling macro finite volume method(FVM) and cellular automata(CA) is proposed in this paper to explore the columnar-to-equiaxed transition(CET) during selective laser melting(SLM) of rare earth magnesium alloy.Taking into account the impact of recoil pressure and Marangoni convection on the molten pool temperature field,the grain structure is simulated.As suggested by the simulation results,with the undissolved Zr serving as heterogeneous nucleation sites,the liquid undercooled layer under the combined action of forced cooling,the temperature gradient and the liquid solute concentration gradient leads to CET.While considering the dissolution of Zr in magnesium matrix,the results demonstrate that the dissolution of element Zr is effective in significantly inhibiting the growth of columnar crystals and ensuring the sufficient constitutional supercooling(CS) required for nucleation.In addition,to raise the preheating temperature contributes to enhancing the outcome of nucleation and incresing the grain size.Invoking the interdependence model(IM),with the cooling rate gradually increasing in the SLM process of magnesium alloy,the nucleation-free zone(NFZ) reduces by decreasing the solute diffusion layer in the front of the solid/liquid(SL) interface and the temperature gradient.The reduction in temperature gradient can promote undercooling for nucleation and facilitate the development of equiaxed crystals.The simulation results are qualitatively verified as highly consistent through experimentation. 展开更多
关键词 multi-scale simulation Columnar-to-equiaxed transition Selective laser melting Rare earth magnesium alloy Constitutional supercooling
原文传递
An Application of the RAMS/FLUENT System on the Multi-Scale Numerical Simulation of the Urban Surface Layer—A Preliminary Study 被引量:11
5
作者 李磊 胡非 +1 位作者 姜金华 程雪玲 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期271-280,共10页
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)... The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL. 展开更多
关键词 multi-scale numerical simulation urban surface layer (USL) urban canopy layer (UCL) RAMS/FLUENT system
在线阅读 下载PDF
Multi-scale simulation model of air system based on cross-dimensional data transmission method 被引量:3
6
作者 Lei WANG Junkui MAO +2 位作者 Song WEI Longfei WANG Jin PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期157-174,共18页
The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the c... The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the calculation accuracy.In this paper,a Cross-dimensional Data Transmission method(CDT)from 3D to 1D is proposed by introducing flow field uniformity into the data transmission.First,a uniformity index was established to quantify the flow field parameter distribution characteristics,and a uniformity index prediction model based on the locally weighted regression method(Lowess)was established to quickly obtain the flow field information.Then,an information selection criterion in 3D to 1D data transmission was established based on the Spearman rank correlation coefficient between the uniformity index and the accuracy of coupling calculation,and the calculation method was automatically determined according to the established criterion.Finally,a modified function was obtained by fitting the ratio of the 3D mass-average parameters to the analytical solution,which are then used to modify the selected parameters at the 1D-3D interface.Taking a typical disk cavity air system as an example,the results show that the calculation accuracy of the CDT method is greatly improved by a relative 53.88%compared with the traditional 1D-3D coupling method.Furthermore,the CDT method achieves a speedup of 2 to 3 orders of magnitude compared to the 3D calculation. 展开更多
关键词 Air system Data transmission Disk cavity multi-scale simulation 1D-3D coupling
原文传递
Multi-scale simulation of diffusion behavior of deterrent in propellant 被引量:1
7
作者 Pan Huang Zekai Zhang +5 位作者 Yuxin Chen Changwei Liu Yong Zhang Cheng Lian Yajun Ding Honglai Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期29-35,共7页
Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient c... Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient calculated by molecular dynamics(MD) simulation is 6 orders of magnitude larger than the experimental values. Meanwhile, few simple and comprehensive theoretical models can explain the phenomenon and accurately predict the concentration distribution of the propellant. Herein, an onion model combining with MD simulation and finite element method of diffusion in propellants is introduced to bridge the gap between the experiments and simulations, and correctly predict the concentration distribution of deterrent. Furthermore, a new time scale is found to characterize the diffusion process. Finally, the time-and position-depended concentration distributions of dibutyl phthalate in nitrocellulose are measured by Raman spectroscopy to verify the correctness of the onion model. This work not only provides guidance for the design of the deterrent, but could be also extended to the diffusion of small molecules in polymer with different crystallinity. 展开更多
关键词 multi-scale simulation DIFFUSION DETERRENT PROPELLANT Onion model Molecular dynamics simulation
在线阅读 下载PDF
Multi-scale coupling simulation in directional solidification of superalloy based on cellular automaton-finite difference method 被引量:1
8
作者 Zhao Guo Jian-xin Zhou +3 位作者 Ya-jun Yin Dong-qiao Zhang Xiao-yuan Ji Xu Shen 《China Foundry》 SCIE 2017年第5期398-404,共7页
Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatib... Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatible. A three-dimensional cellular automaton model couplling both dendritic scale and grain scale is developed to simulate the microstructure evolution of the nickel-based single crystal superalloy DD406. Besides, a macro–mesoscopic/microscopic coupling solution algorithm is proposed to improve computational efficiency. The simulation results of dendrite growth and grain growth of the alloy are obtained and compared with the results given in previous reports. The results show that the primary dendritic arm spacing and secondary dendritic arm spacing of the dendritic growth are consistent with the theoretical and experimental results. The mesoscopic grain simulation can be used to obtain results similar to those of microscopic dendrites simulation. It is indicated that the developed model is feasible and effective. 展开更多
关键词 multi-scale coupling dendritic growth grain growth directional solidification cellular automata numerical simulation
在线阅读 下载PDF
Applying multi-scale simulations to materials research of nuclear fuels:A review 被引量:1
9
作者 Chunyang Wen Di Yun +3 位作者 Xinfu He Yong Xin Wenjie Li Zhipeng Sun 《Materials Reports(Energy)》 2021年第3期64-80,共17页
Computational simulation is an important technical means in research of nuclear fuel materials.Since nuclear fuel issues are inherently multi-scopic,it is imperative to study them with multi-scale simulation scheme.At... Computational simulation is an important technical means in research of nuclear fuel materials.Since nuclear fuel issues are inherently multi-scopic,it is imperative to study them with multi-scale simulation scheme.At present,the development of multi-scale simulation for nuclear fuel materials calls for a more systematic approach,in which lies the main purpose of this article.The most important thing in multi-scale simulation is to accurately formulate the goals to be achieved and the types of methods to be used.In this regard,we first summarize the basic principles and applicability of the simulation methods which are commonly used in nuclear fuel research and are based on different scales ranging from micro to macro,i.e.First-Principles(FP),Molecular Dynamics(MD),Kinetic Monte Carlo(KMC),Phase Field(PF),Rate Theory(RT),and Finite Element Method(FEM).And then we discuss the major material issues in this field,also ranging from micro-scale to macro-scale and covering both pellets and claddings,with emphasis on what simulation method would be most suitable for solving each of the issues.Finally,we give our prospective analysis and understanding about the feasible ways of multi-scale integration and relevant handicaps and challenges. 展开更多
关键词 Computational simulation Nuclear fuel multi-scale modeling Irradiation behavior
在线阅读 下载PDF
Product Development Process Simulation for Concurrent Engineering
10
作者 吴祚宝 《High Technology Letters》 EI CAS 1996年第1期1-4,共4页
The simulation of a product development process for concurrent engineering has beenmotivated by the desire to increase productivity by improving the product development pro-cess.In this paper,the IDEF3 process descrip... The simulation of a product development process for concurrent engineering has beenmotivated by the desire to increase productivity by improving the product development pro-cess.In this paper,the IDEF3 process description capture method is discussed.On the basisof IDEF3 method,a simulation system of the product development process for concurrent en-gineering is developed.The architecture of the simulation system is proposed.The simula-tion model is built using object-oriented approach.It employs an event scheduling approachto emulate the product development process.The simulation mechanism based on messagepassing:is also presented. 展开更多
关键词 concurrent engineering simulation Object-oriented approach
在线阅读 下载PDF
Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting 被引量:9
11
作者 Xuewei Yan Qjngyan Xu +3 位作者 Guoqiang Tian Quanwei Liu Junxing Hou Baicheng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期36-49,共14页
Liquid-metal cooling(LMC)process can offer refinement of microstructure and reduce defects due to the increased cooling rate from enhanced heat extraction,and thus an understanding of solidification behavior in nickel... Liquid-metal cooling(LMC)process can offer refinement of microstructure and reduce defects due to the increased cooling rate from enhanced heat extraction,and thus an understanding of solidification behavior in nickel-based superalloy casting during LMC process is essential for improving mechanical performance of single crystal(SC)castings.In this effort,an integrated heat transfer model coupling meso grain structure and micro dendrite is developed to predict the temperature distribution and microstructure evolution in LMC process.An interpolation algorithm is used to deal with the macro-micro grids coupling issues.The algorithm of cells capture is also modified,and a deterministic cellular automaton(DCA)model is proposed to describe neighborhood cell tracking.In addition,solute distribution is also considered to describe the dendrite growth.Temperature measuring,EBSD,OM and SEM experiments are implemented to verify the proposed model,and the experiment results agree well with the simulation results.Several simulations are performed with a range of withdrawal rates,and the results indicate that 12 mm·min^(-1)is suitable for LMC process in this work,which can result in a fairly narrow and flat mushy zone and correspondingly exhibited fairly straight grains.The mushy zone length is about 4.8 mm in the steady state and the average deviation angle of grains is about 13.9°at the height 90 mm from the casting base under 12 mm·min^(-1)withdrawal process.The competitive phenomenon of dendrites at different withdrawal rates is also observed,which has a great relevant to the temperature fluctuation. 展开更多
关键词 multi-scale model Numerical simulation Liquid-metal cooling Microstructure
原文传递
A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management 被引量:5
12
作者 MIAO Yucong LIU Shuhua +3 位作者 ZHENG Hui ZHENG Yijia CHEN Bicheng WANG Shu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第6期1353-1365,共13页
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion... To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs. 展开更多
关键词 WRF model OPENFOAM AEGLs multi-scale simulation
在线阅读 下载PDF
Numerical failure analysis of a continuous reinforced concrete bridge under strong earthquakes using multi-scale models 被引量:3
13
作者 Li Zhongxian Chen Yu Shi Yundong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期397-413,共17页
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ... Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers. 展开更多
关键词 numerical simulation erosion criterion multi-scale finite element (FE) model failure mechanism failuremode
在线阅读 下载PDF
Molecular Simulations in Macromolecular Science 被引量:2
14
作者 Duo Xu Hai-Xiao Wan +2 位作者 Xue-Rong Yao Juan Li Li-Tang Yan 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第9期1361-1370,I0005,共11页
Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand th... Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand the structure-to-property relationships of diverse macromolecular systems.In this article,we provide a tutorial on molecular simulations,focusing on the technical and practical aspects.Several prominent and classical simulation methods and software are introduced.The applications of molecular simulations in various directions of macromolecular science are thenfeatured by representative systems,including self-assembly,crystallization,chemical reaction,and some typical non-equilibrium systems.This tutorial paper provides a useful overview of molecular simulations in the rapid progress of macromolecular science,and suggests guidance for researchers who start exploiting molecular simulations in their study. 展开更多
关键词 Molecular simulation Coarse-grained molecular dynamics multi-scale method Polymer physics
原文传递
Numerical simulation of avascular tumor growth based on p27 gene regulation 被引量:1
15
作者 Yu ZHOU Jia-wan CHEN +4 位作者 Xiao-ning DAI Yan CAI Wei YAO Shi-xiong XU Quan LONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期327-338,共12页
A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the dist... A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the distribution of the concentration of oxygen, the extracellular matrix (ECM), and the matrix-degradative enzyme (MDE). At the cellular level, the discrete Lagrangien model is adopted to determine the movement, the proliferation, and the death of single tumor cells (TCs). At the genetic level, whether a cell is committed to mitosis is determined by solving a set of equations modeling the effects of the p27 gene control. The avascular morphological evolution of the solid tumor growth is simulated, including the radius the oxygen distribution over time, and the expression. of the solid tumor, the number of the TCs, inhibiting effect' of the up-regulating p27 gene 展开更多
关键词 tumor growth AVASCULAR p27 gene multi-scale continuous-discrete model numerical simulation
在线阅读 下载PDF
The application of multi-scale simulation in advanced electronic packaging 被引量:4
16
作者 Wei Yu Shucan Cheng +5 位作者 Zeyuan Li Li Liu Zhaofu Zhang Yanpu Zhao Yuzheng Guo Sheng Liu 《Fundamental Research》 CSCD 2024年第6期1442-1454,共13页
Electronic packaging is an essential branch of electronic engineering that aims to protect electronic,microelec-tronic,and nanoelectronic systems from environmental conditions.The design of electronic packaging is hig... Electronic packaging is an essential branch of electronic engineering that aims to protect electronic,microelec-tronic,and nanoelectronic systems from environmental conditions.The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena,such as thermal transport,electromagnetic fields,and mechanical stress.This review presents a comprehensive overview of the multiphysics coupling of electric,magnetic,thermal,mechanical,and fluid fields,which are crucial for assessing the performance and reliability of electronic devices.The recent advancements in multi-scale simulation techniques are also system-atically summarized,such as finite element methods at the macroscopic scale,molecular dynamics and density functional theory at the microscopic scale,and particularly machine learning methods for bridging different scales.Additionally,we illustrate how these methods can be applied to study various aspects of electronic pack-aging,such as material properties,interfacial failure,thermal management,electromigration,and stress analysis.The challenges and the potential applications of multi-scale simulation techniques in electronic packaging are also highlighted.Further,some future directions for multi-scale simulation techniques in electronic packaging are concluded for further investigation. 展开更多
关键词 Advanced electronic packaging Multiphysics coupling Machine learning methods multi-scale simulation Electronic devices
原文传递
Concurrent Analysis and Design of Structure and Its Periodic Material
17
作者 Xianjie Wang Yun qin Xun'an Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第6期663-674,共12页
The specific good properties of cellular materials and composite materials, such as low density and high permeability, make the optimal design of such materials necessary and at- tractive. However, the given materials... The specific good properties of cellular materials and composite materials, such as low density and high permeability, make the optimal design of such materials necessary and at- tractive. However, the given materials for the structures may not be optimal or suitable, since the boundary condition and applied loads vary in practical applications; hence the macro-structure and its material micro-structure should be considered simultaneously. Although abundant studies have been reported on the structural and material optimization at each level, very few of them considered the mutual coordination on both scales. In this paper, two FE models are built for the macro-structure and the micro-structure, respectively; and the effective elastic properties of the periodic micro-structure are blended into the analysis of macro-structure by the homogenization theory. Here, a topological optimum is obtained by gradually re-distributing the constituents within the micro-structure and updating the topological shape at the macro-structure until converges are achieved on both scales. The mutual coordination between the roles of micro-scale and macro-scale is considered. Some numerical examples are presented, which illustrate that the proposed optimization algorithm is effective and highly efficient for the micro-structure design and macro-structure optimization. For the composite design, one can see reasonable effects of the stiffness of base materials on the resultant topologies. 展开更多
关键词 multi-scale homogenization method concurrent optimization periodic cellularmaterial periodic composite material
原文传递
Seismic energy dispersion compensation by multi-scale morphology
18
作者 Yu Junqing Wang Runqiu +5 位作者 Liu Taoran Zhang Zhenglong Wu Jian Jiang Yongyong Sun Lipeng Xia Pei 《Petroleum Science》 SCIE CAS CSCD 2014年第3期376-384,共9页
Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for mult... Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method. 展开更多
关键词 Seismic wave multi-scale morphology dispersion compensation high resolution median method spectrum simulation
原文传递
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
19
作者 Vahid Sadeghian Oh-Sung Kwon Frank Vecchio 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期727-743,共17页
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange f... This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required. 展开更多
关键词 hybrid simulation small-scale testing reinforced concrete structures shear behaviour multi-scale modelling
在线阅读 下载PDF
Flow characteristics simulation of spiral coil reactor used in the thermochemical energy storage system
20
作者 Xiaoyi Chen Danyang Song +3 位作者 Dong Zhang Xiaogang Jin Xiang Ling Dongren Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期364-379,共16页
According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat sto... According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat storage is a considerable solution for this problem and thermochemical energy storage is the most promising way because of its great energy density and stability.However,this technology is not mature enough to be applied to the industry.The reactor is an important component in the thermochemical energy storage system where the charging and discharging process happens.In this paper,a spiral coil is proposed and used as a reactor in the thermochemical energy storage system.The advantages of the spiral coil include simple structure,small volume,and so on.To investigate the flow characteristics,the simulation was carried out based on energy-minimization multi-scale model(EMMS)and Eulerian two-phase model.CaCO_(3) particles were chosen as the reactants.Particle distribution was shown in the results.The gas initial velocity was set to 2 m·s^(-1),3 m·s^(-1),and 4 m·s^(-1).When the particles flowed in the coil,gravity,centrifugal force and drag force influenced their flow.With the Reynold numbers increasing,centrifugal and drag force got larger.Accumulation phenomenon existed in the coil and results showed with the gas velocity increasing,accumulation moved from the bottom to the outer wall of the coil.Besides,the accumulation phenomenon was stabilized whenφ>720°.Also due to the centrifugal force,a secondary flow formed,which means solid particles moved from the inside wall to the outside wall.This secondary flow could promote turbulence and mixing of particles and gas.In addition,when the particle volume fraction is reduced from 0.2 to 0.1,the accumulation at the bottom of the coil decreases,and the unevenness of the velocity distribution becomes larger. 展开更多
关键词 Thermochemical energy storage CaCO3/CaO Reactors simulation Two-phase flow Energy-minimization multi-scale model(EMMS)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部