Texture features have played an essential role in the field of medical imaging for computer-aided diagnosis.The gray-level co-occurrence matrix(GLCM)-based texture descriptor has emerged to become one of the most succ...Texture features have played an essential role in the field of medical imaging for computer-aided diagnosis.The gray-level co-occurrence matrix(GLCM)-based texture descriptor has emerged to become one of the most successful feature sets for these applications.This study aims to increase the potential of these features by introducing multi-scale analysis into the construction of GLCM texture descriptor.In this study,we first introduce a new parameter-stride,to explore the definition of GLCM.Then we propose three multi-scaling GLCM models according to its three parameters,(1)learning model by multiple displacements,(2)learning model by multiple strides(LMS),and(3)learning model by multiple angles.These models increase the texture information by introducing more texture patterns and mitigate direction sparsity and dense sampling problems presented in the traditional Haralick model.To further analyze the three parameters,we test the three models by performing classification on a dataset of 63 large polyp masses obtained from computed tomography colonoscopy consisting of 32 adenocarcinomas and 31 benign adenomas.Finally,the proposed methods are compared to several typical GLCM-texture descriptors and one deep learning model.LMS obtains the highest performance and enhances the prediction power to 0.9450 with standard deviation 0.0285 by area under the curve of receiver operating characteristics score which is a significant improvement.展开更多
Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational s...Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition ...The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.展开更多
Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the preven...Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the prevention and control of LF.Methods Samples of cerebrospinal fluid(CSF),blood,urine,saliva,and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection.Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.Results LASV was detected in the patient’s CSF,blood,and urine,while all samples from close contacts and the environment tested negative.The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone.The variability in the glycoprotein complex(GPC)among different strains ranged from 3.9%to 15.1%,higher than previously reported for the seven known lineages.Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes,increasing strain diversity and potentially impacting immune response.Conclusion The case was confirmed through nucleotide detection,with no evidence of secondary transmission or viral spread.The LASV strain identified belongs to lineage IV,with broader GPC variability than previously reported.Mutations in the immune-related sites of GPC may affect immune responses,necessitating heightened vigilance regarding the virus.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,off...With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,coba...Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of th...Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation(AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Nia events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing.Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days,the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function(EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale,northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.展开更多
2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(...2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical ...Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
基金This work was supported by the NIH/NCI,No.CA206171.
文摘Texture features have played an essential role in the field of medical imaging for computer-aided diagnosis.The gray-level co-occurrence matrix(GLCM)-based texture descriptor has emerged to become one of the most successful feature sets for these applications.This study aims to increase the potential of these features by introducing multi-scale analysis into the construction of GLCM texture descriptor.In this study,we first introduce a new parameter-stride,to explore the definition of GLCM.Then we propose three multi-scaling GLCM models according to its three parameters,(1)learning model by multiple displacements,(2)learning model by multiple strides(LMS),and(3)learning model by multiple angles.These models increase the texture information by introducing more texture patterns and mitigate direction sparsity and dense sampling problems presented in the traditional Haralick model.To further analyze the three parameters,we test the three models by performing classification on a dataset of 63 large polyp masses obtained from computed tomography colonoscopy consisting of 32 adenocarcinomas and 31 benign adenomas.Finally,the proposed methods are compared to several typical GLCM-texture descriptors and one deep learning model.LMS obtains the highest performance and enhances the prediction power to 0.9450 with standard deviation 0.0285 by area under the curve of receiver operating characteristics score which is a significant improvement.
文摘Microstructural characteristics and mechanical behavior of hot extruded Al5083/B4C nanocomposites were studied.Al5083and Al5083/B4C powders were milled for50h under argon atmosphere in attrition mill with rotational speed of400r/min.For increasing the elongation,milled powders were mixed with30%and50%unmilled aluminum powder(mass fraction)with meanparticle size of>100μm and<100μm and then consolidated by hot pressing and hot extrusion with9:1extrusion ratio.Hot extrudedsamples were studied by optical microscopy,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),tensile and hardness tests.The results showed that mechanical milling process andpresence of B4C particles increase the yield strength of Al5083alloy from130to566MPa but strongly decrease elongation(from11.3%to0.49%).Adding<100μm unmilled particles enhanced the ductility and reduced tensile strength and hardness,but usingthe>100μm unmilled particles reduced the tensile strength and ductility at the same time.By increasing the content of unmilledparticles failure mechanism changed from brittle to ductile.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金This research is supported by the Key Project of National Natural Science Foundation of China (No.40035010
文摘The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.
基金supported by Public Health Talent Training and Surport Plan(National Administration of Disease Prevention and Control)Research and application of new technology for rapid monitoring and tracing of emergent infectious diseases among entry-exit population(2024YFFK0056)Monitoring,Early warning and Response of Major Infectious Diseases(2022ZDZX0017).
文摘Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the prevention and control of LF.Methods Samples of cerebrospinal fluid(CSF),blood,urine,saliva,and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection.Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.Results LASV was detected in the patient’s CSF,blood,and urine,while all samples from close contacts and the environment tested negative.The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone.The variability in the glycoprotein complex(GPC)among different strains ranged from 3.9%to 15.1%,higher than previously reported for the seven known lineages.Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes,increasing strain diversity and potentially impacting immune response.Conclusion The case was confirmed through nucleotide detection,with no evidence of secondary transmission or viral spread.The LASV strain identified belongs to lineage IV,with broader GPC variability than previously reported.Mutations in the immune-related sites of GPC may affect immune responses,necessitating heightened vigilance regarding the virus.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金financially supported by National Key R&D Program of China(2021YFB3500702)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04).
文摘With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金The National Natural Science Foundation of China under contract Nos 42072324 and 91958202the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0106+1 种基金the Resource&Environment Project of China Ocean Mineral Resources R&D Association under contract No.DY135-C1-1-03the Geological Survey Project of China Geological Survey under contract No.DD20190629.
文摘Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金China Meteorological Special Program(GYHY201506013)National Nature Science Foundation of China(41405068,41275151,41475034)+1 种基金Qing-Lan Project of Jiangsu ProvinceNatural Science Foundation of Jiangsu Province(SBK201220841)
文摘Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation(AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Nia events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing.Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days,the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function(EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale,northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.
文摘2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
文摘Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.