期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification 被引量:2
1
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
在线阅读 下载PDF
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification 被引量:1
2
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION multi-scale
在线阅读 下载PDF
Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
3
作者 Fan Liu Xue-Feng Liu +4 位作者 Ruo-Ming Lan Xu-Ri Yao Shen-Cheng Dou Xiao-Qing Wang Guang-Jie Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期275-282,共8页
Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency d... Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency domain. Theoretical analysis and simulation show the relation between the measurement matrix resolution and compressive sensing(CS)imaging quality. The matrix design is improved to provide multi-scale modulations, followed by individual reconstruction of images of different spatial frequencies. Compared with traditional single-scale CS imaging, the multi-scale method provides high quality imaging in both high and low frequencies, and effectively decreases the overall reconstruction error.Experimental results confirm the feasibility of this technique, especially at low sampling rate. The method may thus be helpful in promoting the implementation of compressive imaging in real applications. 展开更多
关键词 compressed sensing imaging quality spatial frequency domain multi-scale modulation
原文传递
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
4
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
在线阅读 下载PDF
Nest-type NCM ■ Pt/C with oxygen capture character as advanced electrocatalyst for oxygen reduction reaction 被引量:1
5
作者 Teng Chen Yida Xu +5 位作者 Deming Meng Xuefeng Guo Yan Zhu Luming Peng Jianqiang Hu Weiping Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期304-312,I0009,共10页
A unique nest-type catalyst has been designed with a nest of oxygen capture surrounding catalytic Pt centers, which shows much promoted performance, on the base of Pt/C catalyst, for oxygen reduction reaction(ORR). Th... A unique nest-type catalyst has been designed with a nest of oxygen capture surrounding catalytic Pt centers, which shows much promoted performance, on the base of Pt/C catalyst, for oxygen reduction reaction(ORR). The nest is constructed with nitrogen-doped carbon matrix(NCM), derived from the controlled carbonization of PANI precursor, to cover Pt/C catalyst. The unique structure of the catalyst(denoted as NCM■ Pt/C) has many merits. Firstly, it can capture oxygen both in air and in acidic electrolyte. Compared with naked Pt/C, it is found that, in air, the oxygen concentration within the porous nest of NCM surrounding Pt/C particles is ~13 times higher than atmospheric oxygen concentration and, in acidic electrolyte, the concentration of activated oxygen over the catalyst NCM■ Pt/C rise to~1.9 times. Secondly, the NCM nest offers a special electronic modulation on Pt centers toward modified ORR kinetics and then catalytic performances. With these merits, compared with Pt/C, the NCM■ Pt/C catalyst shows 3.2 times higher turnover frequency value and 2.9 times enhanced specific activity for ORR with half-wave potential at 0.894 V. After 50,000 sweeping cycles, the NCM■ Pt/C catalyst retains~66% mass activity and still has advantages over the fresh Pt/C catalyst. We envision that the nest-type catalyst provides a new idea for progress of practical Pt/C ORR catalyst. 展开更多
关键词 Oxygen reduction reaction Surrounding environment Nest-type catalyst Oxygen capture Electronic modulation
在线阅读 下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
6
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
在线阅读 下载PDF
基于改进YOLOv7-tiny的PCB缺陷检测算法
7
作者 侯培国 韩超明 +1 位作者 李宁 宋涛 《燕山大学学报》 北大核心 2025年第2期167-176,共10页
针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池... 针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池化操作掩盖特征图内部有效信息的问题。提出了全局局部门控感知模块,通过选择性特征融合、局部与全局信息结合的方法,降低颈部网络的参数量。基于DeepPCB数据集进行实验得出,改进后的模型较传统模型精度提升了1.5%,参数量和计算量分别下降了66%和20.6%,模型规模降低了66.3%。改进后的算法识别精度高、参数量少、计算量小,可以为PCB缺陷的快速准确识别提供良好的条件。 展开更多
关键词 PCB表面缺陷检测 YOLOv7-tiny 多尺度捕获模块 全局局部门控感知模块 轻量化
在线阅读 下载PDF
计及含光热模块AA-CAES电站和碳捕集的综合能源系统低碳优化调度
8
作者 闫文文 文中 +3 位作者 李丹 郑连华 覃治银 赵迪 《电测与仪表》 北大核心 2025年第6期143-151,共9页
“双碳”目标背景下,为实现综合能源系统(integrated energy systems,IES)多能耦合利用和低碳化,文中提出含光热模块的先进绝热压缩空气(advanced adiabatic compressed air energy storage,AA-CAES)储能电站和电转气(power to gas,P2G... “双碳”目标背景下,为实现综合能源系统(integrated energy systems,IES)多能耦合利用和低碳化,文中提出含光热模块的先进绝热压缩空气(advanced adiabatic compressed air energy storage,AA-CAES)储能电站和电转气(power to gas,P2G)与储液式碳捕集(carbon capture system,CCS)协同运行的IES低碳优化调度模型。论文建立光热模块与AA-CAES电站耦合模型并将其引入至含P2G-CCS的IES中;提出风-光-碳捕集电厂联合供能碳捕集设备运行策略及碳交易模型,以净碳排放量、综合成本最小化为目标函数构建IES低碳优化调度模型。通过算例对比,验证了含光热模块AA-CAES储能电站与P2G-CCS协同运行能够进一步降低总成本,减少碳排放。 展开更多
关键词 光热模块 AA-CAES储能电站 电转气 碳捕集 低碳运行
在线阅读 下载PDF
氢气驱动电化学捕碳系统的模块化设计与优化
9
作者 刘世昌 李一白 +1 位作者 王靖 刘永忠 《化工学报》 北大核心 2025年第8期4108-4118,共11页
氢气驱动的电化学捕碳系统(HECCS)是一种新型的低浓度CO_(2)捕集与分离方法。受大面积膜制备、膜性能和电极性能等限制,HECCS系统的单模块捕碳能力有限。为了提高HECCS系统捕碳性能和系统经济性,本文提出HECCS系统的模块化设计与优化方... 氢气驱动的电化学捕碳系统(HECCS)是一种新型的低浓度CO_(2)捕集与分离方法。受大面积膜制备、膜性能和电极性能等限制,HECCS系统的单模块捕碳能力有限。为了提高HECCS系统捕碳性能和系统经济性,本文提出HECCS系统的模块化设计与优化方法,在分析HECCS系统单模块操作性能基础上,研究了模块化HECCS系统的捕碳策略及优化操作方法,阐明了模块化HECCS系统结构特性及单元模块之间的协调匹配特性。研究表明,在特定的低浓度CO_(2)捕获场景中,在模块化捕碳系统中,不同单元模块组合方式的HECCS模块化系统结构显著影响捕碳性能和经济性。在相同操作条件下,串联结构比并联结构具有更优的除碳效果,多级结构有助于降低系统氢气消耗;HECCS系统的最优级数受进出口CO_(2)浓度、氢气价格和HECCS模块价格影响显著,取决于系统操作费用和投资费用权衡。本研究可为模块化HECCS系统性能优化和经济性提升提供优化设计方法。 展开更多
关键词 电化学捕碳系统 氢气 模块化 系统设计 优化
在线阅读 下载PDF
基于多尺度区域特征融合的多器官语义分割模型
10
作者 郝宏达 罗健旭 《计算机工程》 北大核心 2025年第8期270-280,共11页
深度学习逐渐被广泛应用于医学图像分割领域,基于注意力机制的分割算法是目前研究的主要方法。现有大多数基于注意力机制的2D图像分割模型在多器官分割任务中往往关注切片的整体分割效果,而忽略了切片中小目标特征信息的丢失或欠分割问... 深度学习逐渐被广泛应用于医学图像分割领域,基于注意力机制的分割算法是目前研究的主要方法。现有大多数基于注意力机制的2D图像分割模型在多器官分割任务中往往关注切片的整体分割效果,而忽略了切片中小目标特征信息的丢失或欠分割问题,使模型分割性能受到限制。针对这一问题,提出一种基于多尺度特征融合和改进注意力机制的多器官语义分割模型DASC-Net。DASC-Net的整体框架基于编码器-解码器架构,编码器采用ResNet 50,与解码器之间设置跳跃连接。注意力机制由1个双重注意力模块(DAM)和1个小目标提取(SOC)模块的并联结构实现,从而进行多尺度区域特征融合。DASC-Net不仅可以感知到较大目标的特征信息,还可以通过注意力权重重建的方式保留小目标的特征信息,提高了模型的分割性能。在CHAOS数据集上的实验结果表明,DASC-Net在灵敏度、Jaccard相似系数、正类预测值(PPV)、Dice相似系数和平均交并比(mIoU)上分别可以达到83.72%、75.79%、87.75%、85.63%和77.60%,在Synapse数据集上的Dice相似系数和95%豪斯多夫距离(HD95)指标数值分别为82.44%和21.25 mm。DASC-Net在2个数据集上的表现均优于其他分割网络,具有可靠、准确的分割性能。 展开更多
关键词 深度学习 医学图像分割 注意力机制 多器官 小目标提取模块
在线阅读 下载PDF
混合基质膜在膜法碳捕集技术中的应用分析
11
作者 秦宇 海玉琰 熊日华 《过程工程学报》 北大核心 2025年第10期1008-1020,共13页
在“双碳”战略背景下,碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)技术的重要性日益凸显。作为CCUS技术中的关键环节,CO_(2)分离已成为当前的研究热点。在众多分离法中,膜分离技术凭借低能耗、可连续操作的优势... 在“双碳”战略背景下,碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)技术的重要性日益凸显。作为CCUS技术中的关键环节,CO_(2)分离已成为当前的研究热点。在众多分离法中,膜分离技术凭借低能耗、可连续操作的优势脱颖而出。本工作全面综述了国内外各类CO_(2)分离膜在膜法碳捕集领域的研究现状,重点介绍了混合基质膜的CO_(2)气体渗透分离性能及制备方法的优化。目前,绝大多数混合基质膜的CO_(2)渗透速率介于0~1000 Barrer之间,CO_(2)/N_(2)的分离系数在20~120范围内。研究表明,通过使用修饰改性的晶态多孔填料或直接使用非晶态多孔填料,可有效提升聚合物基底与多孔填料的兼容性,是优化混合基质膜制备方法的可行途径。从后续工业应用的实际需求出发,本工作剖析了不同CO_(2)分离膜组件的优势与不足,明确螺旋卷式是当前最适用于膜法碳捕集领域的组件形式。混合基质膜具备优异的机械与热稳定性、杰出的抗塑化能力及卓越的CO_(2)渗透分离性能,因此在利用螺旋卷式膜组件实现膜法碳捕集应用中展现最大潜力。此外,在添加吹扫气等合适的捕集工艺条件下,基于当前混合基质膜的性能,CO_(2)捕集成本可控制在23 USD/t CO_(2)以内。充分证明了混合基质膜在膜法碳捕集技术中应用的可行性,本工作旨在为CO_(2)膜分离在CCUS技术中的广泛应用提供有力指导。 展开更多
关键词 二氧化碳捕集 CCUS技术 膜组件 混合基质 渗透 工业应用
原文传递
FM-FCN:A Neural Network with Filtering Modules for Accurate Vital Signs Extraction
12
作者 Fangfang Zhu Qichao Niu +3 位作者 Xiang Li Qi Zhao Honghong Su Jianwei Shuai 《Research》 2025年第1期92-106,共15页
Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signal... Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals.In this work,we propose a novel network named filtering module fully convolutional network(FM-FCN),which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise.First,instead of using a fully connected layer,we use an FCN to preserve the time-dimensional correlation information of physiological signals,enabling multiple cycles of signals in the network and providing a basis for signal processing.Second,we introduce the FM as a network module that adapts to eliminate unwanted interference,leveraging the structure of the filter.This approach builds a bridge between deep learning and signal processing methodologies.Finally,we evaluate the performance of FM-FCN using remote photoplethysmography.Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse(BVP)signal and heart rate(HR)accuracy.It substantially improves the quality of BVP waveform reconstruction,with a decrease of 20.23%in mean absolute error(MAE)and an increase of 79.95%in signal-to-noise ratio(SNR).Regarding HR estimation accuracy,FM-FCN achieves a decrease of 35.85%in MAE,29.65%in error standard deviation,and 32.88%decrease in 95%limits of agreement width,meeting clinical standards for HR accuracy requirements.The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction.The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN. 展开更多
关键词 physiological signalsin filtering module fully convolutional network fm fcn which vital signs extraction amplify physiological signals convolutional modulesbut neural networks filtering module capturing local spatial patterns
原文传递
一款具有多方式捕获比较的多功能定时器设计
13
作者 付文婷 刘耀文 杨东 《微处理机》 2025年第5期28-31,共4页
定时器是微控制中的基本功能模块,它的主要作用是定时和计数操作。定时器的用途非常广泛,能够满足工业控制、通信、消费电子等领域对于计数、定时、脉冲宽度调制等需求。本文设计了一款可多模式运行的定时器,它具有13位定时/计数、16位... 定时器是微控制中的基本功能模块,它的主要作用是定时和计数操作。定时器的用途非常广泛,能够满足工业控制、通信、消费电子等领域对于计数、定时、脉冲宽度调制等需求。本文设计了一款可多模式运行的定时器,它具有13位定时/计数、16位定时/计数,双8位定时以及重载定时4种可切换的工作模式,同时增加了捕获和比较功能,可实现边沿触发捕捉、软件定时比较以及16位脉宽调制,适用于控制输出波形或电机控制。尤其是设计电路可产生周期性方波,在电机控制中可以调整电机的转速,是单片机重要的功能模块之一。本设计电路根据市场需求和趋势,增加了具有实用性功能,实现了常规定时器电路的功能升级。 展开更多
关键词 定时器 捕捉比较 微控制器 脉宽调制
在线阅读 下载PDF
Real-time detection network for tiny traffic sign using multi-scale attention module 被引量:16
14
作者 YANG TingTing TONG Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期396-406,共11页
As one of the key technologies of intelligent vehicles, traffic sign detection is still a challenging task because of the tiny size of its target object. To address the challenge, we present a novel detection network ... As one of the key technologies of intelligent vehicles, traffic sign detection is still a challenging task because of the tiny size of its target object. To address the challenge, we present a novel detection network improved from yolo-v3 for the tiny traffic sign with high precision in real-time. First, a visual multi-scale attention module(MSAM), a light-weight yet effective module, is devised to fuse the multi-scale feature maps with channel weights and spatial masks. It increases the representation power of the network by emphasizing useful features and suppressing unnecessary ones. Second, we exploit effectively fine-grained features about tiny objects from the shallower layers through modifying backbone Darknet-53 and adding one prediction head to yolo-v3. Finally, a receptive field block is added into the neck of the network to broaden the receptive field. Experiments prove the effectiveness of our network in both quantitative and qualitative aspects. The m AP@0.5 of our network reaches 0.965 and its detection speed is55.56 FPS for 512 × 512 images on the challenging Tsinghua-Tencent 100 k(TT100 k) dataset. 展开更多
关键词 tiny object detection traffic sign detection multi-scale attention module REAL-TIME
原文传递
基于偏振成像和YOLOv8的雾天道路目标检测 被引量:7
15
作者 谈爱玲 李晓航 +4 位作者 赵勇 高美静 苏海杰 刘闯 郭天安 《计量学报》 CSCD 北大核心 2024年第11期1626-1633,共8页
雾天天气下,车辆和行人目标的准确检测对汽车自动驾驶非常重要。首先通过偏振成像装置采集了0°、45°、90°和135°角度的偏振图像,并通过3种不同的融合方式构建了I04590、stokes和pauli图像数据集。提出一种改进YOLOv... 雾天天气下,车辆和行人目标的准确检测对汽车自动驾驶非常重要。首先通过偏振成像装置采集了0°、45°、90°和135°角度的偏振图像,并通过3种不同的融合方式构建了I04590、stokes和pauli图像数据集。提出一种改进YOLOv8的目标检测算法以提高雾天偏振图像中汽车和行人两类目标的检测准确率。提出一种基于混合池化的MixSPPF结构,改善了原有SPPF结构对全局信息的提取能力;然后基于不同大小的卷积设计了Multiscale Module模块并结合Coordinate Attention注意力机制增强了对空间信息和通道信息的提取。实验结果表明,提出的改进YOLOv8算法获得的全类平均准确率P_(A)@0.5和P_(A)@0.5:0.95分别达到了83.4%和39.3%,比初始YOLOv8算法分别提升了1.6%和0.9%。 展开更多
关键词 目标检测 偏振图像融合 雾天天气 YOLOv8 MixSPPF multi-scale module
在线阅读 下载PDF
膜分离法捕集烟气中二氧化碳的研究进展 被引量:3
16
作者 闫瀚钊 王艳丽 李进锋 《低碳化学与化工》 CAS 北大核心 2024年第11期113-121,132,共10页
膜分离法捕集烟气中二氧化碳(CO_(2))因具有污染小、操作简便和设备体积小等特点而受到了广泛关注。结合国内外膜分离法捕集烟气中CO_(2)的研究进展,首先归纳了CO_(2)分离膜材料的性能指标和开发情况;然后对比了不同形式膜组件的特点,... 膜分离法捕集烟气中二氧化碳(CO_(2))因具有污染小、操作简便和设备体积小等特点而受到了广泛关注。结合国内外膜分离法捕集烟气中CO_(2)的研究进展,首先归纳了CO_(2)分离膜材料的性能指标和开发情况;然后对比了不同形式膜组件的特点,分析了影响膜分离过程设计与优化的因素,总结了膜分离法大规模工业化的难点;最后对膜分离法捕集烟气中CO_(2)技术未来的发展进行了展望(包括研发新型膜材料与配套制备工艺、开发新型膜组件,以及优化工艺流程并建设工业化示范装置)。 展开更多
关键词 膜分离法 膜材料 膜组件 二氧化碳捕集 烟气
在线阅读 下载PDF
应用深度自编码网络的局域网空间入侵监测系统设计 被引量:1
17
作者 李芳 《自动化技术与应用》 2024年第3期91-95,共5页
为有效追赶恶意代码更新速度,实时监测多种网络攻击,设计应用深度自编码网络的局域网空间入侵监测系统。先采用库函数以及FHW抓包方法抓取局域网各监测点的数据包,提取数据包数据特征;然后结合支持向量回归预测算法构建入侵监测模型,完... 为有效追赶恶意代码更新速度,实时监测多种网络攻击,设计应用深度自编码网络的局域网空间入侵监测系统。先采用库函数以及FHW抓包方法抓取局域网各监测点的数据包,提取数据包数据特征;然后结合支持向量回归预测算法构建入侵监测模型,完成入侵数据监测;最后将入侵监测结果保存至数据库中,判定是否需向用户发出预警,由此完成局域网空间入侵监测。经实验验证该系统能够监测到多种攻击手段,且监测完成时间较短,能够快速实现监测,且在24 h内监测到的入侵攻击强度与实际攻击强度未存在较大差距。 展开更多
关键词 深度自编码网络 局域网 空间入侵监测 数据包捕获 攻击强度 响应模块
在线阅读 下载PDF
Modulation recognition network of multi-scale analysis with deep threshold noise elimination
18
作者 Xiang LI Yibing LI +1 位作者 Chunrui TANG Yingsong LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第5期742-758,共17页
To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning... To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning techniques to replace traditional modulated signal processing techniques.To address the problem of low recognition accuracy of the modulated signal at low signal-to-noise ratios,we have designed a novel modulation recognition network of multi-scale analysis with deep threshold noise elimination to recognize the actually collected modulated signals under a symmetric cross-entropy function of label smoothing.The network consists of a denoising encoder with deep adaptive threshold learning and a decoder with multi-scale feature fusion.The two modules are skip-connected to work together to improve the robustness of the overall network.Experimental results show that this method has better recognition accuracy at low signal-to-noise ratios than previous methods.The network demonstrates a flexible self-learning capability for different noise thresholds and the effectiveness of the designed feature fusion module in multi-scale feature acquisition for various modulation types. 展开更多
关键词 Signal noise elimination Deep adaptive threshold learning network multi-scale feature fusion modulation ecognition
原文传递
TMS320F28335在电网频率测量中的应用 被引量:15
19
作者 梁启权 和敬涵 王小君 《国外电子测量技术》 2010年第10期66-68,共3页
本文提出了一种基于TMS320F28335的频率测量方法,用于监测电力系统的电能质量。该方法采用DSP的eCAP模块和通用定时器对输入信号的上升沿进行捕捉,通过记录两个上升沿的触发时间得到输入信号的频率。与软件测频方法相比,其硬件电路简单... 本文提出了一种基于TMS320F28335的频率测量方法,用于监测电力系统的电能质量。该方法采用DSP的eCAP模块和通用定时器对输入信号的上升沿进行捕捉,通过记录两个上升沿的触发时间得到输入信号的频率。与软件测频方法相比,其硬件电路简单,可靠性高、实时性好。理论分析和实验测试表明,该方法测频精度高,很好的满足了电能质量监测装置的要求。 展开更多
关键词 频率测量 TMS320F28335 捕捉模块 电能质量
在线阅读 下载PDF
一种新的光学运动捕捉数据处理方法 被引量:8
20
作者 吴升 张强 +1 位作者 肖伯祥 魏小鹏 《计算机应用研究》 CSCD 北大核心 2009年第5期1938-1940,1964,共4页
提出一种适用于被动式光学人体运动捕捉散乱数据处理方法。该方法基于光学人体运动捕捉散乱数据的全局信息,提出基于模块分段线性模型的数据处理算法。利用模块分段线性模型归纳出不同模块的变化特征,从而确定各模块数据的匹配优先级及... 提出一种适用于被动式光学人体运动捕捉散乱数据处理方法。该方法基于光学人体运动捕捉散乱数据的全局信息,提出基于模块分段线性模型的数据处理算法。利用模块分段线性模型归纳出不同模块的变化特征,从而确定各模块数据的匹配优先级及段内拟合函数,有效地对三维运动数据各模块进行全局性分层次预测和跟踪,并对噪声数据进行基于模块的去噪处理;对缺失运动数据提出基于分段Newton插值拟合算法,进行合理的补缺。该方法经优化后在处理过程中无须人工干预,并能满足实时性要求。 展开更多
关键词 光学运动捕捉 模块去噪算法 模块分段线性模型 Newton插值算法
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部