期刊文献+
共找到2,923篇文章
< 1 2 147 >
每页显示 20 50 100
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
1
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
2
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
3
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
4
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
Long-range masked autoencoder for pre-extraction of trajectory features in within-visual-range maneuver recognition
5
作者 Feilong Jiang Hutao Cui +2 位作者 Yuqing Li Minqiang Xu Rixin Wang 《Defence Technology(防务技术)》 2026年第1期301-315,共15页
In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,... In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems. 展开更多
关键词 Within-visual-range maneuver recognition Trajectory feature pre-extraction Long-range masked autoencoder Kalman filter constraints Intelligent air combat
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
6
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
7
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction 被引量:1
8
作者 Yang Song Weidong Wang +2 位作者 Yuxin Wu Yuhan Fan Xuan Zhao 《International Journal of Coal Science & Technology》 CSCD 2024年第6期54-64,共11页
As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monit... As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monitoring data for the equipment,coupled with the high costs associated with manual annotation.Another challenge stems from the complex structure of the mining machines,making it difficult to reflect the overall operational state through local anomaly detection.Consequently,the application of decoupled local anomaly detection for mining machines in practical production remains challenging.This paper presents an unsupervised learning-based method for detecting anomalies in shearer.The method includes a module for constructing a Multi-scale Correlation Matrix(MSCM)of mining machine operating conditions,as well as the CNN-ConvLSTM Autoencoder(C-CLA)network.The module for constructing an MSCM enhances the representation of interrelationships between various features of the equipment from different perspectives using multiple correlation analysis methods.The C-CLA network integrates convolutional and convolutional recurrent neural networks,with the convolutional structure extracting local spatial features and the ConvLSTM structure further capturing information from different time scales and feature scales,thereby enhancing the model’s perceptual capabilities towards changes in equipment status.Finally,shearer anomaly detection is achieved through the analysis of reconstructed residual matrices.The rationality and practicality of the proposed method have been validated on our dataset,and the model’s generalization capability has been verified through repeated experiments in similar scenarios.However,due to variations in the working environment of different mining faces and differences in equipment models,implementing detection on other mining faces often requires retraining the model with new data.Furthermore,we compared our method with other anomaly detection techniques,and our detection efficiency was superior by approximately 3%.This method effectively detects anomalies in the shearer. 展开更多
关键词 SHEARER Unsupervised learning autoencoder networks Anomaly detection
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
9
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors 被引量:1
10
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation 被引量:1
11
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
12
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation multi-scale Production prediction Adsorbed/free gas ratio
原文传递
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
13
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Multi-scale damage and fracture analysis and statistical damage constitutive model of shallow coral reef limestone based on digital core 被引量:1
14
作者 Yingwei Zhu Xinping Li +4 位作者 Zhengrong Zhou Dengxing Qu Fei Meng Shaohua Hu Wenjie Li 《International Journal of Mining Science and Technology》 2025年第11期1849-1869,共21页
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime... Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL. 展开更多
关键词 Coral reef limestone multi-scale mechanics Digital core Pore structure Representative volume element Damage and fracture Damage statistical constitutive model
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
15
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
16
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
AESR3D:3D overcomplete autoencoder for trabecular computed tomography super resolution
17
作者 Shuwei Zhang Yefeng Liang +3 位作者 Xingyu Li Shibo Li Xiaofeng Xiong Lihai Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期652-665,共14页
Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone miner... Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model. 展开更多
关键词 overcomplete autoencoder SEGMENTATION super resolution trabecular CT
在线阅读 下载PDF
Multimodal Gas Detection Using E-Nose and Thermal Images:An Approach Utilizing SRGAN and Sparse Autoencoder
18
作者 Pratik Jadhav Vuppala Adithya Sairam +5 位作者 Niranjan Bhojane Abhyuday Singh Shilpa Gite Biswajeet Pradhan Mrinal Bachute Abdullah Alamri 《Computers, Materials & Continua》 2025年第5期3493-3517,共25页
Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.T... Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time. 展开更多
关键词 Thermal imaging gas detection multimodal learning generative models autoencoders
在线阅读 下载PDF
Drive-by damage detection methodology for high-speed railway bridges using sparse autoencoders
19
作者 Edson Florentino de Souza Cássio Bragança +2 位作者 Diogo Ribeiro Túlio Nogueira Bittencourt Hermes Carvalho 《Railway Engineering Science》 2025年第4期614-641,共28页
High-speed railway bridges are essential components of any railway transportation system that should keep adequate levels of serviceability and safety.In this context,drive-by methodologies have emerged as a feasible ... High-speed railway bridges are essential components of any railway transportation system that should keep adequate levels of serviceability and safety.In this context,drive-by methodologies have emerged as a feasible and cost-effective monitor-ing solution for detecting damage on railway bridges while minimizing train operation interruptions.Moreover,integrating advanced sensor technologies and machine learning algorithms has significantly enhanced structural health monitoring(SHM)for bridges.Despite being increasingly used in traditional SHM applications,studies using autoencoders within drive-by methodologies are rare,especially in the railway field.This study presents a novel approach for drive-by damage detection in HSR bridges.The methodology relies on acceleration records collected from multiple bridge crossings by an operational train equipped with onboard sensors.Log-Mel spectrogram features derived from the acceleration records are used together with sparse autoencoders for computing statistical distribution-based damage indexes.Numerical simulations were performed on a 3D vehicle-track-bridge interaction system model implemented in Matlab to evaluate the robustness and effectiveness of the proposed approach,considering several damage scenarios,vehicle speeds,and environmental and operational variations,such as multiple track irregularities and varying measurement noise.The results show that the pro-posed approach can successfully detect damages,as well as characterize their severity,especially for very early-stage dam-ages.This demonstrates the high potential of applying Mel-frequency damage-sensitive features associated with machine learning algorithms in the drive-by condition assessment of high-speed railway bridges. 展开更多
关键词 Drive-by Indirect monitoring Damage detection High-speed railway bridges autoencoders
在线阅读 下载PDF
ALSTNet:Autoencoder fused long-and short-term time-series network for the prediction of tunnel structure
20
作者 Bowen Du Haohan Liang +3 位作者 Yuhang Wang Junchen Ye Xuyan Tan Weizhong Chen 《Deep Underground Science and Engineering》 2025年第1期72-82,共11页
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa... It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future. 展开更多
关键词 autoencoder deep learning structural health monitoring time-series prediction
原文传递
上一页 1 2 147 下一页 到第
使用帮助 返回顶部