期刊文献+
共找到269篇文章
< 1 2 14 >
每页显示 20 50 100
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation 被引量:1
1
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
MA-VoxelMorph:Multi-scale attention-based VoxelMorph for nonrigid registration of thoracoabdominal CT images
2
作者 Qing Huang Lei Ren +3 位作者 Tingwei Quan Minglei Yang Hongmei Yuan Kai Cao 《Journal of Innovative Optical Health Sciences》 2025年第1期135-151,共17页
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz... This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries. 展开更多
关键词 Thoracoabdominal CT image registration large deformation fine structure multi-scale attention mechanism
原文传递
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
3
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(GAN) multi-scale convolution
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
4
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification 被引量:2
5
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
在线阅读 下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
6
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
在线阅读 下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model 被引量:1
7
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
在线阅读 下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
8
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
在线阅读 下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
9
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention multi-scale Neural network
在线阅读 下载PDF
MSFResNet:A ResNeXt50 model based on multi-scale feature fusion for wild mushroom identification
10
作者 YANG Yang JU Tao +1 位作者 YANG Wenjie ZHAO Yuyang 《Journal of Measurement Science and Instrumentation》 2025年第1期66-74,共9页
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo... To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification. 展开更多
关键词 multi-scale feature fusion attention mechanism ResNeXt50 wild mushroom identification deep learning
在线阅读 下载PDF
MAGPNet:Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection
11
作者 DING Leqi WANG Biyun +1 位作者 YAO Lixiu CAI Yunze 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期935-951,共17页
To overcome the obstacles of poor feature extraction and little prior information on the appearance of infrared dim small targets,we propose a multi-domain attention-guided pyramid network(MAGPNet).Specifically,we des... To overcome the obstacles of poor feature extraction and little prior information on the appearance of infrared dim small targets,we propose a multi-domain attention-guided pyramid network(MAGPNet).Specifically,we design three modules to ensure that salient features of small targets can be acquired and retained in the multi-scale feature maps.To improve the adaptability of the network for targets of different sizes,we design a kernel aggregation attention block with a receptive field attention branch and weight the feature maps under different perceptual fields with attention mechanism.Based on the research on human vision system,we further propose an adaptive local contrast measure module to enhance the local features of infrared small targets.With this parameterized component,we can implement the information aggregation of multi-scale contrast saliency maps.Finally,to fully utilize the information within spatial and channel domains in feature maps of different scales,we propose the mixed spatial-channel attention-guided fusion module to achieve high-quality fusion effects while ensuring that the small target features can be preserved at deep layers.Experiments on public datasets demonstrate that our MAGPNet can achieve a better performance over other state-of-the-art methods in terms of the intersection of union,Precision,Recall,and F-measure.In addition,we conduct detailed ablation studies to verify the effectiveness of each component in our network. 展开更多
关键词 infrared small objection detection kernel aggregation attention adaptive local contrast measure mixed spatial-channel attention
原文传递
Lightweight Human Pose Estimation Based on Multi-Attention Mechanism
12
作者 LIN Xiao LU Meichen +1 位作者 GAO Mufeng LI Yan 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期899-910,共12页
Human pose estimation has received much attention from the research community because of its wide range of applications.However,current research for pose estimation is usually complex and computationally intensive,esp... Human pose estimation has received much attention from the research community because of its wide range of applications.However,current research for pose estimation is usually complex and computationally intensive,especially the feature loss problems in the feature fusion process.To address the above problems,we propose a lightweight human pose estimation network based on multi-attention mechanism(LMANet).In our method,network parameters can be significantly reduced by lightweighting the bottleneck blocks with depth-wise separable convolution on the high-resolution networks.After that,we also introduce a multi-attention mechanism to improve the model prediction accuracy,and the channel attention module is added in the initial stage of the network to enhance the local cross-channel information interaction.More importantly,we inject spatial crossawareness module in the multi-scale feature fusion stage to reduce the spatial information loss during feature extraction.Extensive experiments on COCO2017 dataset and MPII dataset show that LMANet can guarantee a higher prediction accuracy with fewer network parameters and computational effort.Compared with the highresolution network HRNet,the number of parameters and the computational complexity of the network are reduced by 67%and 73%,respectively. 展开更多
关键词 human pose estimation attention mechanisms multi-scale feature fusion high-resolution networks
原文传递
VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition
13
作者 Ziyang Deng Weidong Min +2 位作者 Qing Han Mengxue Liu Longfei Li 《Computers, Materials & Continua》 2025年第2期2793-2812,共20页
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn... Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks. 展开更多
关键词 Dynamic sign language recognition TRANSFORMER soft attention attention-based visual feature aggregation
在线阅读 下载PDF
AMSFuse:Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification
14
作者 Chengzhang Zhu Ahmed Alasri +5 位作者 Tao Xu Yalong Xiao Abdulrahman Noman Raeed Alsabri Xuanchu Duan Monir Abdullah 《Computers, Materials & Continua》 2025年第3期5153-5167,共15页
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p... Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods. 展开更多
关键词 Diabetic retinopathy multi-scale feature fusion global features local features integrated attention mechanism retinal images
暂未订购
Attention⁃Based Multi⁃scale CNN and LSTM Model for Remaining Useful Life Estimation
15
作者 DUAN Jiajun LU Zhong DU Zhiqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期64-77,共14页
Current aero-engine life prediction areas typically focus on single-scale degradation features,and the existing methods are not comprehensive enough to capture the relationship within time series data.To address this ... Current aero-engine life prediction areas typically focus on single-scale degradation features,and the existing methods are not comprehensive enough to capture the relationship within time series data.To address this problem,we propose a novel remaining useful life(RUL)estimation method based on the attention mechanism.Our approach designs a two-layer multi-scale feature extraction module that integrates degradation features at different scales.These features are then processed in parallel by a self-attention module and a three-layer long short-term memory(LSTM)network,which together capture long-term dependencies and adaptively weigh important feature.The integration of degradation patterns from both components into the attention module enhances the model’s ability to capture long-term dependencies.Visualizing the attention module’s weight matrices further improves model interpretability.Experimental results on the C-MAPSS dataset demonstrate that our approach outperforms the existing state-of-the-art methods. 展开更多
关键词 attention mechanism convolutional neural network(CNN) long short-term memory(LSTM) multi-scale feature extraction
在线阅读 下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
16
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
在线阅读 下载PDF
Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism 被引量:1
17
作者 Jinxian Bai Yao Fan +1 位作者 Zhiwei Zhao Lizhi Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期999-1025,共27页
Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images wit... Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time. 展开更多
关键词 Image inpainting TRANSFORMER edge prior axial attention multi-scale fusion attention
在线阅读 下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
18
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 multi-scale attention mechanism dynamic detection head
在线阅读 下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
19
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
在线阅读 下载PDF
Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation
20
作者 Yuchun Li Mengxing Huang +1 位作者 Yu Zhang Zhiming Bai 《Computers, Materials & Continua》 SCIE EI 2024年第2期1649-1668,共20页
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta... The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation. 展开更多
关键词 Prostate segmentation multi-scale attention 3D Transformer feature fusion MRI
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部