Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fa...A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fabricate organ prototypes with controlled cell deposition by integrating extrusion-based 3D printing, electrospinning, and 3D bioprinting. Multi-scale sheets were first fabricated by 3D printing and electrospinning;then, all the sheets were assembled into organ prototypes by sol-gel react io n duri ng bioprinting. With this method, macroscale structures fabricated by 3D printing ensure the customized structures and provide mechanical support, nanoscale structures fabricated by electrospinning offer a favorable environment for cell growth, and different types of cells with controllable densities are deposited in accurate locations by bioprinting. The results show that L929 mouse fibroblasts encapsulated in the structures exhibited over 90% survival within 10 days and maintai ned a high proliferation rate. Furthermore, the cells grew in spherical shapes first and then migrated to the nano scale fibers showing stretched morphology. Additionally, a branched vascular structure was successfully fabricated using the presented method. Compared with other methods, this strategy offers an easy way to simultancously realize the shape control, nanolibrous structures, and cell accurate deposition, which will have potemidi applications in tissue cngineering.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its impor...Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.展开更多
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most po...The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.展开更多
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec...Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fi...Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fit and hard-to-trace assembly stress concentration.Assemblers can only check whether the dimensional tolerance of the component design is exceeded step by step in combination with prior knowledge.Inversion in industrial assembly optimizes assembly and design by comparing real and theoretical results and doing inversion analysis to reduce assembly deviation.The digital twin(DT)technology visualizes and predicts the assembly process by mapping real and virtual model parameters and states simultaneously,expanding parameter range for inversion analysis and improving inversion result accuracy.Problems in improving industrial assembly precision and the significance and research status of DT-driven parametric inversion of assembly tools,processes and object precision are summarized.It analyzes vital technologies for assembly precision inversion such as multi-attribute assembly process parameter sensing,virtual modeling of high-fidelity assembly systems,twin synchronization of assembly process data models,multi-physical field simulation,and performance twin model construction of the assembly process.Combined with human-cyber-physical system,augmented reality,and generative intelligence,the outlook of DT-driven assembly precision inversion is proposed,providing support for DT's use in industrial assembly and precision improvement.展开更多
As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.C...As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.Currently,robotic peg-in-hole assembly faces challenges such as complex analysis of part contact forces,difficulties in task modeling,and the failure of traditional strategies.Simply controlling the position of the robot's end effector cannot achieve high precision,high efficiency peg-in-hole assembly.Flexible assembly,especially intelligent flexible assembly,is becoming the future development trend.So there is a lack of comprehensive reviews on robotic flexible peg-in-hole assembly.This paper first outlines the basic components of peg-in-hole assembly and summarizes the two basic operational processes of peg-in-hole assembly,along with their related theoretical foundations.We then review and analyze the research on passive compliant assembly,active compliant assembly,and intelligent flexible assembly.Finally,it presents an outlook on the future development directions of robotic peg-in-hole assembly.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we rep...Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.展开更多
Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a co...Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.展开更多
Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study ...Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements.We propose a video feature extraction method based on the Temporal Shift Module Network(TSM-ResNet50)to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames.Furthermore,we construct an action recognition and segmentation model based on the Refined-Multi-Scale Temporal Convolutional Network(Refined-MS-TCN)to identify assembly action intervals and accurately acquire action categories.Experiments on our self-built reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,achieving an accuracy rate of 83%.Additionally,we develop a HiddenMarkovModel(HMM)integrated with assembly task constraints to predict operator assembly intentions based on the probability transition matrix and assembly task constraints.The experimental results show that our method for predicting operator assembly intentions can achieve an accuracy of 90.6%,which is a 13.3%improvement over the HMM without task constraints.展开更多
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This...Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.展开更多
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金the National Nature Science Foundation of China(Nos.51805474,51622510,U1609207)Science Fund for Creative Research Groups of National Natural Science Foundation of China (No.51821093)China Postdoctoral Science Foundation (No.2017M621915).
文摘A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fabricate organ prototypes with controlled cell deposition by integrating extrusion-based 3D printing, electrospinning, and 3D bioprinting. Multi-scale sheets were first fabricated by 3D printing and electrospinning;then, all the sheets were assembled into organ prototypes by sol-gel react io n duri ng bioprinting. With this method, macroscale structures fabricated by 3D printing ensure the customized structures and provide mechanical support, nanoscale structures fabricated by electrospinning offer a favorable environment for cell growth, and different types of cells with controllable densities are deposited in accurate locations by bioprinting. The results show that L929 mouse fibroblasts encapsulated in the structures exhibited over 90% survival within 10 days and maintai ned a high proliferation rate. Furthermore, the cells grew in spherical shapes first and then migrated to the nano scale fibers showing stretched morphology. Additionally, a branched vascular structure was successfully fabricated using the presented method. Compared with other methods, this strategy offers an easy way to simultancously realize the shape control, nanolibrous structures, and cell accurate deposition, which will have potemidi applications in tissue cngineering.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金supported by the Yunnan Seed Laboratory,China(202205AR070001-15)the National Natural Science Foundation of China,China(Grant No.32160697)。
文摘Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.
基金financially supported by the Natural Science Foundation of ShanDong(Nos.ZR2023QD152 and ZR2021MD002).
文摘The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.
基金the National Key R&D Program of China(No.2021YFA1501503)the National Natural Science Foundation of China(Nos.22250008,22121004,22108197)+3 种基金the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202107)the Natural Science Foundation of Tianjin City(No.21JCZXJC00060)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Xplorer Prize for financial support。
文摘Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3304200)National Natural Science Foundation of China(Grant No.52205288)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2024T170795,2024M762815)Zhejiang Provincial Key Research and Development Program(Grant No.2024C01029)。
文摘Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fit and hard-to-trace assembly stress concentration.Assemblers can only check whether the dimensional tolerance of the component design is exceeded step by step in combination with prior knowledge.Inversion in industrial assembly optimizes assembly and design by comparing real and theoretical results and doing inversion analysis to reduce assembly deviation.The digital twin(DT)technology visualizes and predicts the assembly process by mapping real and virtual model parameters and states simultaneously,expanding parameter range for inversion analysis and improving inversion result accuracy.Problems in improving industrial assembly precision and the significance and research status of DT-driven parametric inversion of assembly tools,processes and object precision are summarized.It analyzes vital technologies for assembly precision inversion such as multi-attribute assembly process parameter sensing,virtual modeling of high-fidelity assembly systems,twin synchronization of assembly process data models,multi-physical field simulation,and performance twin model construction of the assembly process.Combined with human-cyber-physical system,augmented reality,and generative intelligence,the outlook of DT-driven assembly precision inversion is proposed,providing support for DT's use in industrial assembly and precision improvement.
基金Supported by National Natural Science Foundation of China(Grant Nos.52475509 and U22A20203)Beijing Municipal Natural Science Foundation(Grant No.L248005)Hebei Provincial Natural Science Foundation(Grant No.E2023105059)。
文摘As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.Currently,robotic peg-in-hole assembly faces challenges such as complex analysis of part contact forces,difficulties in task modeling,and the failure of traditional strategies.Simply controlling the position of the robot's end effector cannot achieve high precision,high efficiency peg-in-hole assembly.Flexible assembly,especially intelligent flexible assembly,is becoming the future development trend.So there is a lack of comprehensive reviews on robotic flexible peg-in-hole assembly.This paper first outlines the basic components of peg-in-hole assembly and summarizes the two basic operational processes of peg-in-hole assembly,along with their related theoretical foundations.We then review and analyze the research on passive compliant assembly,active compliant assembly,and intelligent flexible assembly.Finally,it presents an outlook on the future development directions of robotic peg-in-hole assembly.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
基金supported by the National Natural Science Foundation of China(Nos.22325111,2220312,21871298,91956118)Guangdong Basic Research Center of Excellence for Functional Molecular Engineeringthe Sun Yat-sen University。
文摘Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.
文摘Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities.
文摘Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements.We propose a video feature extraction method based on the Temporal Shift Module Network(TSM-ResNet50)to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames.Furthermore,we construct an action recognition and segmentation model based on the Refined-Multi-Scale Temporal Convolutional Network(Refined-MS-TCN)to identify assembly action intervals and accurately acquire action categories.Experiments on our self-built reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,achieving an accuracy rate of 83%.Additionally,we develop a HiddenMarkovModel(HMM)integrated with assembly task constraints to predict operator assembly intentions based on the probability transition matrix and assembly task constraints.The experimental results show that our method for predicting operator assembly intentions can achieve an accuracy of 90.6%,which is a 13.3%improvement over the HMM without task constraints.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.15308024)a grant from Research Centre for Carbon-Strategic Catalysis,The Hong Kong Polytechnic University(CE2X).
文摘Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.