期刊文献+
共找到410篇文章
< 1 2 21 >
每页显示 20 50 100
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
1
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
Physically Constrained Adaptive Deep Learning for Ocean Vertical-Mixing Parameterization
2
作者 Junjie FANG Xiaojie LI +4 位作者 Jin LI Zhanao HUANG Yongqiang YU Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期165-177,共13页
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res... Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results. 展开更多
关键词 deep learning vertical-mixing parameterization ocean sciences adaptive network
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
3
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
4
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
在线阅读 下载PDF
Scale adaptive fitness evaluation‐based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning 被引量:2
5
作者 Ye‐Qun Wang Jian‐Yu Li +2 位作者 Chun‐Hua Chen Jun Zhang Zhi‐Hui Zhan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期849-862,共14页
Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to ... Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to two issues:Both the hyperparameter and ar-chitecture should be optimised and the optimisation process is computationally expen-sive.To tackle these two issues,this paper focusses on solving the hyperparameter and architecture optimization problem for the NN and proposes a novel light‐weight scale‐adaptive fitness evaluation‐based particle swarm optimisation(SAFE‐PSO)approach.Firstly,the SAFE‐PSO algorithm considers the hyperparameters and architectures together in the optimisation problem and therefore can find their optimal combination for the globally best NN.Secondly,the computational cost can be reduced by using multi‐scale accuracy evaluation methods to evaluate candidates.Thirdly,a stagnation‐based switch strategy is proposed to adaptively switch different evaluation methods to better balance the search performance and computational cost.The SAFE‐PSO algorithm is tested on two widely used datasets:The 10‐category(i.e.,CIFAR10)and the 100−cate-gory(i.e.,CIFAR100).The experimental results show that SAFE‐PSO is very effective and efficient,which can not only find a promising NN automatically but also find a better NN than compared algorithms at the same computational cost. 展开更多
关键词 deep learning evolutionary computation hyperparameter and architecture optimisation neural networks particle swarm optimisation scale‐adaptive fitness evaluation
在线阅读 下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
6
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
在线阅读 下载PDF
Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network
7
作者 Yu Zhang Mingkui Zhang +1 位作者 Jitao Li Guangshu Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1987-2006,共20页
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ... Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade. 展开更多
关键词 Rockburst prediction rockburst intensity grade deep neural network batch gradient descent multi-scale residual
在线阅读 下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
8
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
在线阅读 下载PDF
Regression model for civil aero-engine gas path parameter deviation based on deep domainadaptation with Res-BP neural network 被引量:10
9
作者 Xingjie ZHOU Xuyun FU +1 位作者 Minghang ZHAO Shisheng ZHONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期79-90,共12页
The variations in gas path parameter deviations can fully reflect the healthy state of aeroengine gas path components and units;therefore,airlines usually take them as key parameters for monitoring the aero-engine gas... The variations in gas path parameter deviations can fully reflect the healthy state of aeroengine gas path components and units;therefore,airlines usually take them as key parameters for monitoring the aero-engine gas path performance state and conducting fault diagnosis.In the past,the airlines could not obtain deviations autonomously.At present,a data-driven method based on an aero-engine dataset with a large sample size can be utilized to obtain the deviations.However,it is still difficult to utilize aero-engine datasets with small sample sizes to establish regression models for deviations based on deep neural networks.To obtain monitoring autonomy of each aero-engine model,it is crucial to transfer and reuse the relevant knowledge of deviation modelling learned from different aero-engine models.This paper adopts the Residual-Back Propagation Neural Network(Res-BPNN)to deeply extract high-level features and stacks multi-layer Multi-Kernel Maximum Mean Discrepancy(MK-MMD)adaptation layers to map the extracted high-level features to the Reproduce Kernel Hilbert Space(RKHS)for discrepancy measurement.To further reduce the distribution discrepancy of each aero-engine model,the method of maximizing domain-confusion loss based on an adversarial mechanism is introduced to make the features learned from different domains as close as possible,and then the learned features can be confused.Through the above methods,domain-invariant features can be extracted,and the optimal adaptation effect can be achieved.Finally,the effectiveness of the proposed method is verified by using cruise data from different civil aero-engine models and compared with other transfer learning algorithms. 展开更多
关键词 Civil aero-engine deep domain adaptation Domain confusion Neural networks Transfer learning
原文传递
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
10
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
在线阅读 下载PDF
Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network 被引量:1
11
作者 Yi Xu Fu Li +6 位作者 Jianqiang Gu Zhiwei Bi Bing Cao Quanlong Yang Jiaguang Han Qinghua Hu Weili Zhang 《Advanced Photonics Nexus》 2024年第2期8-17,共10页
Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain su... Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain sufficiently accurate predictions,the conventional deep-learning-based method consumes excessive time to collect the data set,thus hindering its wide application in this interdisciplinary field.We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another spectral range.We demonstrate three transfer strategies and experimentally quantify their performance,among which the“frozen-none”robustly improves the prediction accuracy by∼26%compared to direct learning.We propose to use a complex-valued deep neural network during the training process to further improve the spectral predicting precision by∼30%compared to its real-valued counterparts.We design several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target network and a global optimization algorithm.The simulated results successfully validate the capability of our approach.Our work provides a universal methodology for efficient and accurate metasurface design in arbitrary wavebands,which will pave the way toward the automated and mass production of metasurfaces. 展开更多
关键词 transfer learning complex-valued deep neural network metasurface inverse design conditioned adaptive particle swarm optimization TERAHERTZ
在线阅读 下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
12
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN MULTILAYER dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
在线阅读 下载PDF
Adaptive Threshold Estimation of Open Set Voiceprint Recognition Based on OTSU and Deep Learning 被引量:1
13
作者 Xudong Li Xinjia Yang Linhua Zhou 《Journal of Applied Mathematics and Physics》 2020年第11期2671-2682,共12页
Aiming at the problem of open set voiceprint recognition, this paper proposes an adaptive threshold algorithm based on OTSU and deep learning. The bottleneck technology of open set voiceprint recognition lies in the c... Aiming at the problem of open set voiceprint recognition, this paper proposes an adaptive threshold algorithm based on OTSU and deep learning. The bottleneck technology of open set voiceprint recognition lies in the calculation of similarity values and thresholds of speakers inside and outside the set. This paper combines deep learning and machine learning methods, and uses a Deep Belief Network stacked with three layers of Restricted Boltzmann Machines to extract deep voice features from basic acoustic features. And by training the Gaussian Mixture Model, this paper calculates the similarity value of the feature, and further determines the threshold of the similarity value of the feature through OTSU. After experimental testing, the algorithm in this paper has a false rejection rate of 3.00% for specific speakers, a false acceptance rate of 0.35% for internal speakers, and a false acceptance rate of 0 for external speakers. This improves the accuracy of traditional methods in open set voiceprint recognition. This proves that the method is feasible and good recognition effect. 展开更多
关键词 Voiceprint Recognition deep Neural network (DNN) OTSU adaptive Threshold
在线阅读 下载PDF
A 3D semantic segmentation network for accurate neuronal soma segmentation
14
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
Para2Mesh:A dual diffusion framework for moving mesh adaptation
15
作者 Jian YU Hongqiang LYU +2 位作者 Ran XU Wenxuan OUYANG Xuejun LIU 《Chinese Journal of Aeronautics》 2025年第7期147-163,共17页
Multi-scale problems in Computational Fluid Dynamics(CFD)often require numerous simulations across various design parameters.Using a fixed mesh for all cases may fail to capture critical physical features.Moving mesh ... Multi-scale problems in Computational Fluid Dynamics(CFD)often require numerous simulations across various design parameters.Using a fixed mesh for all cases may fail to capture critical physical features.Moving mesh adaptation provides an optimal resource allocation to obtain high-resolution flow-fields on low-resolution meshes.However,most existing methods require manual experience and the flow posteriori information poses great challenges to practical applications.In addition,generating adaptive meshes directly from design parameters is difficult due to highly nonlinear relationships.The diffusion model is currently the most popular model in generative tasks that integrates the diffusion principle into deep learning to capture the complex nonlinear correlations.A dual diffusion framework,Para2Mesh,is proposed to predict the adaptive meshes from design parameters by exploiting the robust data distribution learning ability of the diffusion model.Through iterative denoising,the proposed dual networks accurately reconstruct the flow-field to provide flow features as supervised information,and then achieve rapid and reliable mesh movement.Experiments in CFD scenarios demonstrate that Para2Mesh predicts similar meshes directly from design parameters with much higher efficiency than traditional method.It could become a real-time adaptation tool to assist engineering design and optimization,providing a promising solution for high-resolution flow-field analysis. 展开更多
关键词 Mesh adaptation Flow-field reconstruction Computational fluid dynamics deep learning Diffusion model Graph neural network
原文传递
Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model
16
作者 Tehreem Fatima Kewen Xia +2 位作者 Wenbiao Yang Qurat UlAin Poornima Lankani Perera 《Computers, Materials & Continua》 2025年第7期811-826,共16页
The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment.However,the inherent limitations of existing datas... The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment.However,the inherent limitations of existing datasets,including significant class imbalances and inadequate sample diversity,pose challenges to the accurate prediction and classification of diabetes.Addressing these issues,this study proposes an innovative diabetes prediction framework that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit(CNN-BiGRU)model for classification with Adaptive Synthetic Sampling(ADASYN)for data augmentation.ADASYN was employed to generate synthetic yet representative data samples,effectively mitigating class imbalance and enhancing the diversity and representativeness of the dataset.This augmentation process is critical for ensuring the robustness and generalizability of the predictive model,particularly in scenarios where minority class samples are underrepresented.The CNN-BiGRU architecture was designed to leverage the complementary strengths of CNN in extracting spatial features and BiGRU in capturing sequential dependencies,making it well-suited for the complex patterns inherent in medical data.The proposed framework demonstrated exceptional performance,achieving a training accuracy of 98.74%and a test accuracy of 97.78%on the augmented dataset.These results validate the efficacy of the integrated approach in addressing the challenges of class imbalance and dataset heterogeneity,while significantly enhancing the diagnostic precision for diabetes prediction.This study provides a scalable and reliable methodology with promising implications for advancing diagnostic accuracy in medical applications,particularly in resource-constrained and data-limited environments. 展开更多
关键词 Convolutional neural network bidirectional gated recurrent unit adaptive synthetic sampling hybrid deep learning diabetes prediction
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
17
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
18
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions
19
作者 Chih-Ta Yen Tz-Yun Chen +1 位作者 Un-Hung Chen Guo-Chang WangZong-Xian Chen 《Computers, Materials & Continua》 SCIE EI 2023年第1期83-99,共17页
A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.M... A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.Multiple kernel sizes were used in convolutional neural network(CNN)to evaluate their performance for extracting features.Moreover,a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner.The CNN achieved recognition of the four table tennis strokes.Experimental data were obtained from20 research participants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment.The data were collected to verify the performance of the proposed models for wearable devices.Finally,the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58%and 99.16%,respectively,for the four strokes.The accuracy for five-fold cross validation was 99.87%.This result also shows that the multi-scale convolutional neural network has better robustness after fivefold cross validation. 展开更多
关键词 Wearable devices deep learning six-axis sensor feature fusion multi-scale convolutional neural networks action recognit
在线阅读 下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
20
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部