Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline metals.When using traditional discrete dislocation dynamics(DDD)to capture this process,we often need to update...Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline metals.When using traditional discrete dislocation dynamics(DDD)to capture this process,we often need to update the forces on N dislocations involving~N 2 interactions.In this letter,we introduce a multi-scale algorithm to speed up the calculations by dividing a sample of interest into sub-domain grids:dislocations within a characteristic area interact following the conventional way,but their interaction with dislocations in other grids are simplified by lumping all dislocations in another grid as a super one.Such a multi-scale algorithm lowers the computational load to~N 1.5.We employed this algorithm to model dislocation creep in Al-Mg alloy.The simulation leads to a power-law creep rate in consistent with experimental observations.The stress exponent of the power-law creep is a resultant of dislocations climb for~5 and viscous dislocations glide for~3.展开更多
This letter introduces color constancy and Retinex theory for image enhancement.It clas- sifies Retinex algorithms into four categories and provides their principles and implementations in general.The experimental res...This letter introduces color constancy and Retinex theory for image enhancement.It clas- sifies Retinex algorithms into four categories and provides their principles and implementations in general.The experimental results of Frankle-McCann,MSR (Multi-Scale Retinex) and PNSD (Pro- jected Normalized Steepest Descent) Retinex algorithms are presented and compared.Moreover, variance and average gradient are proposed to evaluate the performance of the different algorithms.展开更多
In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information ...In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.展开更多
Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algori...Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algorithm to achieve optimal results.In our proposed model,gamma correction and Retinex address color cast issues and enhance image edges and details.The final enhanced image is obtained through color balancing.The BES algorithm seeks the optimal solution through the selection,search,and swooping stages.However,it is prone to getting stuck in local optima and converges slowly.To overcome these limitations,we propose an improved BES algorithm(ABES)with enhanced population learning,position updates,and control parameters.ABES is employed to optimize the core parameters of gamma correction and Retinex to improve image quality,and the maximization of information entropy is utilized as the objective function.Real benchmark images are collected to validate its performance.Experimental results demonstrate that ABES outperforms the existing image enhancement methods,including the flower pollination algorithm,the chimp optimization algorithm,particle swarm optimization,and BES,in terms of information entropy,peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and patch-based contrast quality index(PCQI).ABES demonstrates superior performance both qualitatively and quantitatively,and it helps enhance prominent features and contrast in the images while maintaining the natural appearance of the original images.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
基金support from the National Key Research and Development Program of China (Grant 2017YFB0202800)the National Natural Science Foundation of China, Basic Science Center for “Multiscale Problems in Nonlinear Mechanics” (Grant 11988102)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020200)the Chinese Academy of Sciences Center for Excellence in Complex System Mechanics
文摘Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline metals.When using traditional discrete dislocation dynamics(DDD)to capture this process,we often need to update the forces on N dislocations involving~N 2 interactions.In this letter,we introduce a multi-scale algorithm to speed up the calculations by dividing a sample of interest into sub-domain grids:dislocations within a characteristic area interact following the conventional way,but their interaction with dislocations in other grids are simplified by lumping all dislocations in another grid as a super one.Such a multi-scale algorithm lowers the computational load to~N 1.5.We employed this algorithm to model dislocation creep in Al-Mg alloy.The simulation leads to a power-law creep rate in consistent with experimental observations.The stress exponent of the power-law creep is a resultant of dislocations climb for~5 and viscous dislocations glide for~3.
文摘This letter introduces color constancy and Retinex theory for image enhancement.It clas- sifies Retinex algorithms into four categories and provides their principles and implementations in general.The experimental results of Frankle-McCann,MSR (Multi-Scale Retinex) and PNSD (Pro- jected Normalized Steepest Descent) Retinex algorithms are presented and compared.Moreover, variance and average gradient are proposed to evaluate the performance of the different algorithms.
基金Project(61071162) supported by the National Natural Science Foundation of China
文摘In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.
基金supported by the Research on theKey Technology of Damage Identification Method of Dam Concrete Structure based on Transformer Image Processing(242102521031)the project Research on Situational Awareness and Behavior Anomaly Prediction of Social Media Based on Multimodal Time Series Graph(232102520004)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B520019).
文摘Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algorithm to achieve optimal results.In our proposed model,gamma correction and Retinex address color cast issues and enhance image edges and details.The final enhanced image is obtained through color balancing.The BES algorithm seeks the optimal solution through the selection,search,and swooping stages.However,it is prone to getting stuck in local optima and converges slowly.To overcome these limitations,we propose an improved BES algorithm(ABES)with enhanced population learning,position updates,and control parameters.ABES is employed to optimize the core parameters of gamma correction and Retinex to improve image quality,and the maximization of information entropy is utilized as the objective function.Real benchmark images are collected to validate its performance.Experimental results demonstrate that ABES outperforms the existing image enhancement methods,including the flower pollination algorithm,the chimp optimization algorithm,particle swarm optimization,and BES,in terms of information entropy,peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and patch-based contrast quality index(PCQI).ABES demonstrates superior performance both qualitatively and quantitatively,and it helps enhance prominent features and contrast in the images while maintaining the natural appearance of the original images.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.