期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Face Recognition on Partial and Holistic LBP Features 被引量:2
1
作者 Xiao-Rong Pu,Yi Zhou,and Rui-Yi Zhou the School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China 《Journal of Electronic Science and Technology》 CAS 2012年第1期56-60,共5页
An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is di... An algorithm for face description and recognition based on multi-resolution with multi-scale local binary pattern (multi-LBP) features is proposed. The facial image pyramid is constructed and each facial image is divided into various regions from which partial and holistic local binary patter (LBP) histograms are extracted. All LBP features of each image are concatenated to a single LBP eigenvector with different resolutions. The dimensionaUty of LBP features is then reduced by a local margin alignment (LMA) algorithm based on manifold, which can preserve the between-class variance. Support vector machine (SVM) is applied to classify facial images. Extensive experiments on ORL and CMU face databases clearly show the superiority of the proposed scheme over some existed algorithms, especially on the robustness of the method against different facial expressions and postures of the subjects. 展开更多
关键词 Face recognition local binary pattern operator multi-resolution with multi-scale local binary pattern ocal margin alignment dimensionality reduction.
在线阅读 下载PDF
基于多尺度LBP和复合核的高光谱图像分类方法 被引量:2
2
作者 黄伟 黄遥 +1 位作者 牛继强 王华 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2021年第2期300-307,共8页
为了更好地利用高光谱图像的纹理特征信息,提出了一个基于多尺度LBP和复合核的高光谱图像分类方法.利用LBP的两个最佳尺度来提取高光谱图像的纹理特征,将得到的空间纹理信息输入高斯核函数中,得到两个空间核,与直接提取光谱信息得到的... 为了更好地利用高光谱图像的纹理特征信息,提出了一个基于多尺度LBP和复合核的高光谱图像分类方法.利用LBP的两个最佳尺度来提取高光谱图像的纹理特征,将得到的空间纹理信息输入高斯核函数中,得到两个空间核,与直接提取光谱信息得到的光谱核结合在一起组成一个复合核,将这个复合核输入支持向量机(Support Vector Machine,SVM)进行分类得到分类结果.结果表明,在Indian Pines和Pavia University这两个真实的数据集上分类精度分别达到0.9948和0.9918,明显优于其他同类杰出的高光谱图像分类方法. 展开更多
关键词 高光谱图像 多尺度LBP 复合核 支持向量机(SVM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部