In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discus...In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.展开更多
In order to improve the work efficiency of non-destructive testing(NDT)and the reliability of NDT results,an automatic method to detect defects in the ultrasonic image was researched.According to the characterization ...In order to improve the work efficiency of non-destructive testing(NDT)and the reliability of NDT results,an automatic method to detect defects in the ultrasonic image was researched.According to the characterization of ultrasonic D-scan image,clutter wave suppression and de-noising were presented firstly.Then,the image is processed by binaryzation using KSW 2 D entropy based on image segmentation method.The results showed that,the global threshold based segmentation method was somewhat ineffective for D-scan image because of under-segmentation.Especially,when the image is big in size,small targets which are composed by a small amount of pixels are often undetected.Whereas,local threshold based image segmentation method is effective in recognizing small defects because it takes local image character into account.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the...In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.展开更多
The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entrop...The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entropy,in image processing field has a role associated with image settings.As an initial step in image processing,the entropy is always used the image’s segmentation to determine the regions of image which is used to separate the background and objects in image.Image segmentation known as the process which divides the image into multiple regions or sets of pixels.Many applications have been development to enhance the image processing.This paper utilizes the Shannon entropy to achieve edge detection process and segmentation of the image.It introduces a new method of edge detection for 2-D histogram and Shannon entropy based on multilevel threshold.The method utilizes the gray value and the average gray value of the pixels to achieve the two dimensional histogram.The current method has apriority in comparison to some upper classical methods.The experimental results exhibited that the proposed method could capture a moderate quality and execution time better than other comparative methods,particularly in the largest images size.The proposed method offers good results when applied with images of different sizes from the civilization of ancient Egyptians.展开更多
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopa...Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.展开更多
文摘In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we propose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is proposed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demonstrated higher accuracy and efficiency compared to state-of-the-art approaches.
基金supported by the National Nature Science Foundation of China(51375002,51005056)。
文摘In order to improve the work efficiency of non-destructive testing(NDT)and the reliability of NDT results,an automatic method to detect defects in the ultrasonic image was researched.According to the characterization of ultrasonic D-scan image,clutter wave suppression and de-noising were presented firstly.Then,the image is processed by binaryzation using KSW 2 D entropy based on image segmentation method.The results showed that,the global threshold based segmentation method was somewhat ineffective for D-scan image because of under-segmentation.Especially,when the image is big in size,small targets which are composed by a small amount of pixels are often undetected.Whereas,local threshold based image segmentation method is effective in recognizing small defects because it takes local image character into account.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
基金supported by the China Postdoctoral Science Foundation(20100471451)the Science and Technology Foundation of State Key Laboratory of Underwater Measurement&Control Technology(9140C2603051003)
文摘In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.
文摘The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entropy,in image processing field has a role associated with image settings.As an initial step in image processing,the entropy is always used the image’s segmentation to determine the regions of image which is used to separate the background and objects in image.Image segmentation known as the process which divides the image into multiple regions or sets of pixels.Many applications have been development to enhance the image processing.This paper utilizes the Shannon entropy to achieve edge detection process and segmentation of the image.It introduces a new method of edge detection for 2-D histogram and Shannon entropy based on multilevel threshold.The method utilizes the gray value and the average gray value of the pixels to achieve the two dimensional histogram.The current method has apriority in comparison to some upper classical methods.The experimental results exhibited that the proposed method could capture a moderate quality and execution time better than other comparative methods,particularly in the largest images size.The proposed method offers good results when applied with images of different sizes from the civilization of ancient Egyptians.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LZ22F020005,LTGS23E070001)National Natural Science Foundation of China(62076185,U1809209).
文摘Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.