The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance ...The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios.展开更多
In an ad hoc network, it is usually difficult to optimize the assignment of network routing resources using a single type of routing protocol due to the differences in network scale, node moving mode and node distribu...In an ad hoc network, it is usually difficult to optimize the assignment of network routing resources using a single type of routing protocol due to the differences in network scale, node moving mode and node distribution. Therefore, it is desirable to have nodes run multiple routing protocols simultaneously so that more than one protocols can be chosen to work jointly. For this purpose, a multiple routing platform for Ad hoc networks is proposed on a higher level of current routing protocols. In order to ensure the security of the platform, a security mechanism and its formal analysis by BAN logic is given. The simulation results of the network performance demonstrate that the proposed multi-routing platform is practicable in some complex applications.展开更多
To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded ...To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded as a nonlinear transformer realizing the mapping from the RGB color space to CIELAB color space. A variety of mapping accuracy were obtained with different network structures. BP neural networks can provide a satisfactory mapping accuracy in the field of color space transformation for video cameras.展开更多
A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality ar...A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K展开更多
We are interested in providing Video-on-Demand (VoD) streaming service to a large population of clients using peer-to-peer (P2P) approach. Given the asynchronous demands from multiple clients, continuously changing of...We are interested in providing Video-on-Demand (VoD) streaming service to a large population of clients using peer-to-peer (P2P) approach. Given the asynchronous demands from multiple clients, continuously changing of the buffered contents, and the continuous video display requirement, how to collaborate with potential partners to get expected data for future content delivery are very important and challenging. In this paper, we develop a novel scheduling algorithm based on deadline- aware network coding (DNC) to fully exploit the network resource for efficient VoD service. DNC generalizes the existing net- work coding (NC) paradigm, an elegant solution for ubiquitous data distribution. Yet, with deadline awareness, DNC improves the network throughput and meanwhile avoid missing the play deadline in high probability, which is a major deficiency of the con- ventional NC. Extensive simulation results demonstrated that DNC achieves high streaming continuity even in tight network conditions.展开更多
In this paper, we propose a multi-source multi-path video streaming system for supporting high quality concurrent video-on-demand (VoD) services over wireless mesh networks (WMNs), and leverage forward error correctio...In this paper, we propose a multi-source multi-path video streaming system for supporting high quality concurrent video-on-demand (VoD) services over wireless mesh networks (WMNs), and leverage forward error correction to enhance the error resilience of the system. By taking wireless interference into consideration, we present a more realistic networking model to capture the characteristics of WMNs and then design a route selection scheme using a joint rate/interference-distortion optimiza- tion framework to help the system optimally select concurrent streaming paths. We mathematically formulate such a route selec- tion problem, and solve it heuristically using genetic algorithm. Simulation results demonstrate the effectiveness of our proposed scheme.展开更多
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar...The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.展开更多
The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing...The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing video from cloud server to users in partially connected cooperative D2 D network using network coding. In such a scenario, the transmission conflicts occur from simultaneous transmissions of multiple devices, and the scheduling decision should be made not only on the encoded packets but also on the set of transmitting devices. We analyze the lower bound and give an integer linear formulation of the joint optimization problem over the set of transmitting devices and the packet combinations.We also propose a heuristic solution for this setup using a conflict graph and local graph at every device. Simulation results show that our coding scheme significantly reduces the number of transmission slots, which will increase the efficiency of video delivery.展开更多
Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices w...Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices with wireless interfaces to enable video uploading to the cloud for video playback in a later time point. In this paper, we propose a QoE-aware mobile cloud video recording scheme in the roadside vehicular networks, which can adaptively select the proper wireless interface and video bitrate for video uploading to the cloud. To maximize the total utility, we need to design a control strategy to carefully balance the transmission cost and the achieved QoE for users. To this purpose, we investigate the tradeoff between cost incurred by uploading through cellular networks and the achieved QoE of users. We apply the optimization framework to solve the formulated problem and design an online scheduling algorithm. We also conduct extensive trace-driven simulations and our results show that our algorithm achieves a good balance between the transmission cost and user QoE.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Und...Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.展开更多
With correlating with human perception, quality of experience(Qo E) is also an important measurement in evaluation of video quality in addition to quality of service(Qo S). A cross-layer scheme based on Lyapunov optim...With correlating with human perception, quality of experience(Qo E) is also an important measurement in evaluation of video quality in addition to quality of service(Qo S). A cross-layer scheme based on Lyapunov optimization framework for H.264/AVC video streaming over wireless Ad hoc networks is proposed, with increasing both Qo E and Qo S performances. Different from existing works, this scheme routes and schedules video packets according to the statuses of the frame buffers at the destination nodes to reduce buffer underflows and to increase video playout continuity. The waiting time of head-ofline packets of data queues are considered in routing and scheduling to reduce the average end-to-end delay of video sessions. Different types of packets are allocated with different priorities according to their generated rates under H.264/AVC. To reduce the computational complexity, a distributed media access control policy and a power control algorithm cooperating with the media access policy are proposed. Simulation results show that, compared with existing schemes, this scheme can improve both the Qo S and Qo E performances. The average peak signal-to-noise ratio(PSNR) of the received video streams is also increased.展开更多
Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its...Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its low encoding complex- ity. To achieve a good Rate-Distortion (R-D) per- formance, the current WZVC paradi^prls usually a- dopt an end-to-end rate control scheme in which the decoder repeatedly requests the additional deco- ding data from the encoder for decoding Wyner-Ziv frames. Therefore, the waiting time of the additional decoding data is especially long in multihop WVSNs. In this paper, we propose a novel pro- gressive in-network rate control scheme for WZVC. The proposed in-network puncturing-based rate control scheme transfers the partial channel codes puncturing task from the encoder to the relay nodes. Then, the decoder can request the addition- al decoding data from the relay nodes instead of the encoder, and the total waiting time for deco- ding Wyner-Ziv frames is reduced consequently. Simulation results validate the proposed rate con- trol scheme.展开更多
Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional ...Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional video streaming,the quality of experience(QoE)of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends.Therefore,effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction.This work makes the following contribution:First,a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services.The simulation is formulated to offer real-time measurements,saving the expensive expenses associated with real-world equipment.Second,A valuable framework for QoE-aware video streaming categorization is introduced in 5G networks based on machine learning(ML)by incorporating the hyperparameter tuning(HPT)principle.It implements an enhanced hyperparameter tuning(EHPT)ensemble and decision tree(DT)classifier for video streaming categorization.The performance of the ML approach is assessed by considering precision,accuracy,recall,and computation time metrics for manifesting the superiority of these classifiers regarding video streaming categorization.This paper demonstrates that our ML classifiers achieve QoE prediction accuracy of 92.59%for(EHPT)ensemble and 87.037%for decision tree(DT)classifiers.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
A method of transmission and monitoring in local area network(LAN) for the welding seam video information of binocular vision welding robot is proposed.This paper uses MPEG-4 video CODEC functions of DivX,video for Wi...A method of transmission and monitoring in local area network(LAN) for the welding seam video information of binocular vision welding robot is proposed.This paper uses MPEG-4 video CODEC functions of DivX,video for Windows(VFW) video capture technology,multi-threaded network communication idea and WinSock Socket in Visual C++ 6.0.In the end,client/server(C/S) communication model based on TCP/IP protocol has been developed.Experimental results show that the method can achieve the multiple welding seam video's real-time transmission in LAN.Moreover,the Canny operator is used to realize the edge feature extraction of the seam image which is captured by the client,so that the edge of the seam extracted is continuous and clear.展开更多
Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum ...The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.展开更多
The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the vi...The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.展开更多
文摘The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios.
文摘In an ad hoc network, it is usually difficult to optimize the assignment of network routing resources using a single type of routing protocol due to the differences in network scale, node moving mode and node distribution. Therefore, it is desirable to have nodes run multiple routing protocols simultaneously so that more than one protocols can be chosen to work jointly. For this purpose, a multiple routing platform for Ad hoc networks is proposed on a higher level of current routing protocols. In order to ensure the security of the platform, a security mechanism and its formal analysis by BAN logic is given. The simulation results of the network performance demonstrate that the proposed multi-routing platform is practicable in some complex applications.
文摘To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded as a nonlinear transformer realizing the mapping from the RGB color space to CIELAB color space. A variety of mapping accuracy were obtained with different network structures. BP neural networks can provide a satisfactory mapping accuracy in the field of color space transformation for video cameras.
基金The National High Technology Research and Development Program of China (863Program) (No.2003AA1Z2130)the Scienceand Technology Project of Zhejiang Province(No.2005C11001-02)
文摘A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K
基金Project (No. DAG05/06.EG05) supported by the Research GrantCouncil (RGC) of Hong Kong, China
文摘We are interested in providing Video-on-Demand (VoD) streaming service to a large population of clients using peer-to-peer (P2P) approach. Given the asynchronous demands from multiple clients, continuously changing of the buffered contents, and the continuous video display requirement, how to collaborate with potential partners to get expected data for future content delivery are very important and challenging. In this paper, we develop a novel scheduling algorithm based on deadline- aware network coding (DNC) to fully exploit the network resource for efficient VoD service. DNC generalizes the existing net- work coding (NC) paradigm, an elegant solution for ubiquitous data distribution. Yet, with deadline awareness, DNC improves the network throughput and meanwhile avoid missing the play deadline in high probability, which is a major deficiency of the con- ventional NC. Extensive simulation results demonstrated that DNC achieves high streaming continuity even in tight network conditions.
文摘In this paper, we propose a multi-source multi-path video streaming system for supporting high quality concurrent video-on-demand (VoD) services over wireless mesh networks (WMNs), and leverage forward error correction to enhance the error resilience of the system. By taking wireless interference into consideration, we present a more realistic networking model to capture the characteristics of WMNs and then design a route selection scheme using a joint rate/interference-distortion optimiza- tion framework to help the system optimally select concurrent streaming paths. We mathematically formulate such a route selec- tion problem, and solve it heuristically using genetic algorithm. Simulation results demonstrate the effectiveness of our proposed scheme.
基金National Natural Science Foundation of China(No.61573095)Natural Science Foundation of Shanghai,China(No.6ZR1446700)
文摘The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.
基金supported by Fundamental Research Funds for the Central Universities(No.SWU115002,No.XDJK2015C104)
文摘The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing video from cloud server to users in partially connected cooperative D2 D network using network coding. In such a scenario, the transmission conflicts occur from simultaneous transmissions of multiple devices, and the scheduling decision should be made not only on the encoded packets but also on the set of transmitting devices. We analyze the lower bound and give an integer linear formulation of the joint optimization problem over the set of transmitting devices and the packet combinations.We also propose a heuristic solution for this setup using a conflict graph and local graph at every device. Simulation results show that our coding scheme significantly reduces the number of transmission slots, which will increase the efficiency of video delivery.
基金supported in part by the National Science Foundation of China under Grant 61272397,Grant 61572538,Grant 61174152,Grant 61331008in part by the Guangdong Natural Science Funds for Distinguished Young Scholar under Grant S20120011187
文摘Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices with wireless interfaces to enable video uploading to the cloud for video playback in a later time point. In this paper, we propose a QoE-aware mobile cloud video recording scheme in the roadside vehicular networks, which can adaptively select the proper wireless interface and video bitrate for video uploading to the cloud. To maximize the total utility, we need to design a control strategy to carefully balance the transmission cost and the achieved QoE for users. To this purpose, we investigate the tradeoff between cost incurred by uploading through cellular networks and the achieved QoE of users. We apply the optimization framework to solve the formulated problem and design an online scheduling algorithm. We also conduct extensive trace-driven simulations and our results show that our algorithm achieves a good balance between the transmission cost and user QoE.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
基金supported by the National Natural Science Foundation of China under Grant No.61801119。
文摘Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.
文摘With correlating with human perception, quality of experience(Qo E) is also an important measurement in evaluation of video quality in addition to quality of service(Qo S). A cross-layer scheme based on Lyapunov optimization framework for H.264/AVC video streaming over wireless Ad hoc networks is proposed, with increasing both Qo E and Qo S performances. Different from existing works, this scheme routes and schedules video packets according to the statuses of the frame buffers at the destination nodes to reduce buffer underflows and to increase video playout continuity. The waiting time of head-ofline packets of data queues are considered in routing and scheduling to reduce the average end-to-end delay of video sessions. Different types of packets are allocated with different priorities according to their generated rates under H.264/AVC. To reduce the computational complexity, a distributed media access control policy and a power control algorithm cooperating with the media access policy are proposed. Simulation results show that, compared with existing schemes, this scheme can improve both the Qo S and Qo E performances. The average peak signal-to-noise ratio(PSNR) of the received video streams is also increased.
基金This paper was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302701 the National Natural Science Foundation of China under Grants No. 60833009, No. 61133015+2 种基金 the China National Funds for Distinguished Young Scientists under Grant No. 60925010 the Funds for Creative Research Groups of China under Grant No. 61121001 the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1049.
文摘Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its low encoding complex- ity. To achieve a good Rate-Distortion (R-D) per- formance, the current WZVC paradi^prls usually a- dopt an end-to-end rate control scheme in which the decoder repeatedly requests the additional deco- ding data from the encoder for decoding Wyner-Ziv frames. Therefore, the waiting time of the additional decoding data is especially long in multihop WVSNs. In this paper, we propose a novel pro- gressive in-network rate control scheme for WZVC. The proposed in-network puncturing-based rate control scheme transfers the partial channel codes puncturing task from the encoder to the relay nodes. Then, the decoder can request the addition- al decoding data from the relay nodes instead of the encoder, and the total waiting time for deco- ding Wyner-Ziv frames is reduced consequently. Simulation results validate the proposed rate con- trol scheme.
文摘Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional video streaming,the quality of experience(QoE)of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends.Therefore,effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction.This work makes the following contribution:First,a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services.The simulation is formulated to offer real-time measurements,saving the expensive expenses associated with real-world equipment.Second,A valuable framework for QoE-aware video streaming categorization is introduced in 5G networks based on machine learning(ML)by incorporating the hyperparameter tuning(HPT)principle.It implements an enhanced hyperparameter tuning(EHPT)ensemble and decision tree(DT)classifier for video streaming categorization.The performance of the ML approach is assessed by considering precision,accuracy,recall,and computation time metrics for manifesting the superiority of these classifiers regarding video streaming categorization.This paper demonstrates that our ML classifiers achieve QoE prediction accuracy of 92.59%for(EHPT)ensemble and 87.037%for decision tree(DT)classifiers.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
基金the National Natural Science Foundation of China (No.61165008)the Natural Science Foundation of Jiangxi Province (No.20114BAB206004)the Project of Jiangxi Provincial Education Department(No.GJJ12038)
文摘A method of transmission and monitoring in local area network(LAN) for the welding seam video information of binocular vision welding robot is proposed.This paper uses MPEG-4 video CODEC functions of DivX,video for Windows(VFW) video capture technology,multi-threaded network communication idea and WinSock Socket in Visual C++ 6.0.In the end,client/server(C/S) communication model based on TCP/IP protocol has been developed.Experimental results show that the method can achieve the multiple welding seam video's real-time transmission in LAN.Moreover,the Canny operator is used to realize the edge feature extraction of the seam image which is captured by the client,so that the edge of the seam extracted is continuous and clear.
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
基金supported by the National Natural Science Foundation of China under Grant No.61301101
文摘The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.
基金Project (No. CCR-0325639) partially supported by the National Science Foundation, USA
文摘The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.