Fire smoke movement of multi-floor and multi-room (MFMR) fire was studied at the model test building in State Key Laboratory of Fire Science (SKLFS). The ingredient, temperature, air pressure difference and air veloci...Fire smoke movement of multi-floor and multi-room (MFMR) fire was studied at the model test building in State Key Laboratory of Fire Science (SKLFS). The ingredient, temperature, air pressure difference and air velocity of smoke were measured and analyzed. Meanwhile, the hazard of smoke ingredient to exposed occupants was analyzed based on the national standard, Occupational Exposure Limit for Hazardous Agents in the Workplace (GBZ2-2002). The experimental results showed that the maximum temperature difference in MFMR fire was located along the vertical height from the fire source. With the spreading and diffusion of smoke, the temperature of smoke layer would tend to be no difference. In the fire of woodpile and kerosene, the main smoke ingredients such as SO 2 , CO and CO 2 would first exceed human’s average physiological limit, while smoke ingredients such as NO and NO 2 would come behind. Because of the higher fluctuation range and frequency of air pressure difference of smoke in multi-layer building fire, the fire smoke would spread around everywhere of the passageway and made the human evacuation more difficult.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.50106017)China National Key Basic Research Special Funds(Grant No.2001CB409600)the 10th Five-year Tackle Key Plan of China Science and Technology(Grant No.2001BA803B01).
文摘Fire smoke movement of multi-floor and multi-room (MFMR) fire was studied at the model test building in State Key Laboratory of Fire Science (SKLFS). The ingredient, temperature, air pressure difference and air velocity of smoke were measured and analyzed. Meanwhile, the hazard of smoke ingredient to exposed occupants was analyzed based on the national standard, Occupational Exposure Limit for Hazardous Agents in the Workplace (GBZ2-2002). The experimental results showed that the maximum temperature difference in MFMR fire was located along the vertical height from the fire source. With the spreading and diffusion of smoke, the temperature of smoke layer would tend to be no difference. In the fire of woodpile and kerosene, the main smoke ingredients such as SO 2 , CO and CO 2 would first exceed human’s average physiological limit, while smoke ingredients such as NO and NO 2 would come behind. Because of the higher fluctuation range and frequency of air pressure difference of smoke in multi-layer building fire, the fire smoke would spread around everywhere of the passageway and made the human evacuation more difficult.