Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees l...Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins.展开更多
This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and cat...This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.展开更多
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based...This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.展开更多
Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path ...Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.展开更多
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d...The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.展开更多
The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving...The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes.展开更多
As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-int...As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.展开更多
Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering sc...Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering schemes for maximum debris removal with minimum fuel consumption,including task assignment,sequence planning,and trajectory planning,must be formulated.The coupling between variables’dimensions and optimization results in task assignment poses challenges,as debris removal is repetitive and uncertain,leading to a vast search space.This paper proposes a novel Greedy Randomized Adaptive Search Procedure with Large Neighborhood and Crossover Mechanisms(GRASP-LNCM)to address this problem.The hybrid dynamic iteration mechanism improves computational efficiency and enhances the optimality of results.The model innovatively considers unsuccessful single removal by using a quantitative method to assess removal percentage.In addition,to improve the efficiency of sequence and trajectory planning,a Suboptimal Search Algorithm(SSA)based on the Lambert property and accelerated Multi-Revolution Lambert Problem(MRLP)solving strategy is established.Finally,a real Iridium-33 debris removal mission is studied.The simulation demonstrates that the proposed algorithm achieves state-of-the-art performance in several typical scenarios.Compared to the contact-based scheme,the new one is simpler,saving more fuel under certain conditions.展开更多
Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lowe...Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planni...For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.展开更多
Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated ...Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot o...Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method.展开更多
To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distrib...To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distributed new energy consumption is proposed.Firstly,the spatio-temporal correlation of large-scale wind-photovoltaic energy is modeled based on the Vine Copula model,and the spatial correlation of the generated wind-photovoltaic power generation is corrected to get the spatio-temporal correlation of wind-photovoltaic power generation scenarios.Finally,considering the subsequent development of new energy on demand for high-voltage distribution network peaking margin and the economy of the system peaking,we propose the optimization model of high-voltage distribution network energy storage plant siting and capacity setting for source-storage cooperative peaking.The simulation results show that the proposed energy storage plant planning method can effectively alleviate the branch circuit blockage,promote new energy consumption,reduce the burden of the main grid peak shifting,and leave sufficient peak shifting margin for the subsequent development of a new energy distribution network while ensuring the economy.展开更多
Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as...Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance.展开更多
Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to...Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system.展开更多
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous...Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.展开更多
With the rapid advancement of deep reinforcement learning(DRL)in multi-agent systems,a variety of practical application challenges and solutions in the direction of multi-agent deep reinforcement learning(MADRL)are su...With the rapid advancement of deep reinforcement learning(DRL)in multi-agent systems,a variety of practical application challenges and solutions in the direction of multi-agent deep reinforcement learning(MADRL)are surfacing.Path planning in a collision-free environment is essential for many robots to do tasks quickly and efficiently,and path planning for multiple robots using deep reinforcement learning is a new research area in the field of robotics and artificial intelligence.In this paper,we sort out the training methods for multi-robot path planning,as well as summarize the practical applications in the field of DRL-based multi-robot path planning based on the methods;finally,we suggest possible research directions for researchers.展开更多
基金supported in part by 14th Five Year National Key R&D Program Project(Project Number:2023YFB3211001)the National Natural Science Foundation of China(62273339,U24A201397).
文摘Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins.
基金the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e a Tecnologia FCT)under contract UIDB/UIDP/00134/2020.
文摘This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.
文摘This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.
文摘Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.
基金supported by the National Key R&D Program of China(No.2022YFB3104502)the National Natural Science Foundation of China(No.62301251)+2 种基金the Natural Science Foundation of Jiangsu Province of China under Project(No.BK20220883)the open research fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2024D04)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.
基金supported in part by the National Natural Science Foundation of China(Nos.52205532 and 624B2077)the National Key Research and Development Program of China(No.2023YFB4302003).
文摘The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes.
基金funded by the Technology Project of State Grid Jibei Electric Power Supply Co.,Ltd.(Grant Number:52018F240001).
文摘As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.
基金co-supported by the National Natural Science Foundation of China(Nos.U23B6001,62273118,12150008)the Fundamental Research Funds for the Central Universities,China(No.2023FRFK02043)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(No.LH2022F023)China Aerospace Science and Technology Corporation Youth Talent Support Program.
文摘Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering schemes for maximum debris removal with minimum fuel consumption,including task assignment,sequence planning,and trajectory planning,must be formulated.The coupling between variables’dimensions and optimization results in task assignment poses challenges,as debris removal is repetitive and uncertain,leading to a vast search space.This paper proposes a novel Greedy Randomized Adaptive Search Procedure with Large Neighborhood and Crossover Mechanisms(GRASP-LNCM)to address this problem.The hybrid dynamic iteration mechanism improves computational efficiency and enhances the optimality of results.The model innovatively considers unsuccessful single removal by using a quantitative method to assess removal percentage.In addition,to improve the efficiency of sequence and trajectory planning,a Suboptimal Search Algorithm(SSA)based on the Lambert property and accelerated Multi-Revolution Lambert Problem(MRLP)solving strategy is established.Finally,a real Iridium-33 debris removal mission is studied.The simulation demonstrates that the proposed algorithm achieves state-of-the-art performance in several typical scenarios.Compared to the contact-based scheme,the new one is simpler,saving more fuel under certain conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20202 and 52275477).
文摘Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金Sponsored by the Science Foundation for Youths of Heilongjiang province (Grant No.QC08C05)
文摘For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.
文摘Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
文摘Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method.
基金supported by State Grid Anhui Electric Power Co.,Ltd.Research Program(B3120923000C).
文摘To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distributed new energy consumption is proposed.Firstly,the spatio-temporal correlation of large-scale wind-photovoltaic energy is modeled based on the Vine Copula model,and the spatial correlation of the generated wind-photovoltaic power generation is corrected to get the spatio-temporal correlation of wind-photovoltaic power generation scenarios.Finally,considering the subsequent development of new energy on demand for high-voltage distribution network peaking margin and the economy of the system peaking,we propose the optimization model of high-voltage distribution network energy storage plant siting and capacity setting for source-storage cooperative peaking.The simulation results show that the proposed energy storage plant planning method can effectively alleviate the branch circuit blockage,promote new energy consumption,reduce the burden of the main grid peak shifting,and leave sufficient peak shifting margin for the subsequent development of a new energy distribution network while ensuring the economy.
基金supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan under Grant No.249015/0224.
文摘Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance.
基金the National Natural Science Foundation of China(No.51965032)the National Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Excellent Dectoral Student Foundation of Gansu Province of China(No.23JRRA842)the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)。
文摘Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system.
文摘Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.
文摘With the rapid advancement of deep reinforcement learning(DRL)in multi-agent systems,a variety of practical application challenges and solutions in the direction of multi-agent deep reinforcement learning(MADRL)are surfacing.Path planning in a collision-free environment is essential for many robots to do tasks quickly and efficiently,and path planning for multiple robots using deep reinforcement learning is a new research area in the field of robotics and artificial intelligence.In this paper,we sort out the training methods for multi-robot path planning,as well as summarize the practical applications in the field of DRL-based multi-robot path planning based on the methods;finally,we suggest possible research directions for researchers.