Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and pea...Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network.展开更多
This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy dema...This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.展开更多
Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variat...Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid.展开更多
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc...During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.展开更多
In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm i...In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of ...In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,...The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,termed CNP,are described.In each subsystem there is at least one or one set of practical mathematical methobs.Some new models and mathematical methods have been introduced.In the development of CNP the idea of cognitive system engineering has been insisted on,which claims that human and computer intelligence should be combined together to solve the complex engineering problems cooperatively.Practical applications have shown that not only the optimal plan can be automatically reached with many complicated factors considered, but also the computation,analysis and graphic drawing burden can be released considerably.展开更多
In the context of clean and Low-carbon energy transformation and new power system,China^photovoltaic power generation will usher in great development.Its large-scale access impacts the safe and stable operation of the...In the context of clean and Low-carbon energy transformation and new power system,China^photovoltaic power generation will usher in great development.Its large-scale access impacts the safe and stable operation of the power grid with increasing significance.In order to strengthen the support and Leading roles of the standards,it is urgent to revise the national standard GB/T 29319-2012,Technical requirements for connecting photovoltaic power system to distribution network,based on the current development trend of photovoltaic power generation and power grid transformation needs.This paper firstly interprets the important technical provisions of the standard,then analyzes the problems in its implementation and finally proposes some revision suggestions in terms of grid adaptability,power control and fault crossing,to facilitate safe and orderly development of photovoltaic power generation in China.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.T...The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta...The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.展开更多
A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain struc...A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.展开更多
A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering function for complex networks. This method can overcome the ...A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering function for complex networks. This method can overcome the biased and inaccurate faults of graphical linear fitting methods commonly used in current network research. Furthermore, it is verified to have higher goodness-of-fit than graphical methods by comparing the KS (Kolmogorov-Smirnov) test statistics for 10 CNN (Connecting Nearest-Neighbor) networks.展开更多
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by the US Appalachian Regional Commission(ARC)under Grant MU-21579-23。
文摘Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.
基金supported by the Inner Mongolia Power Company 2024 Staff Innovation Studio Innovation Project“Research on Cluster Output Prediction and Group Control Technology for County-Wide Distributed Photovoltaic Construction”.
文摘Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid.
基金This article was supported by the general project“Research on Wind and Photovoltaic Fault Characteristics and Practical Short Circuit Calculation Model”(521820200097)of Jiangxi Electric Power Company.
文摘During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.
基金This work is supported by the project of Hebei power technology of state grid from 2018 to 2019:Research and application of real-time situation assessment and visualization(SZKJXM20170445).
文摘In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
文摘In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,termed CNP,are described.In each subsystem there is at least one or one set of practical mathematical methobs.Some new models and mathematical methods have been introduced.In the development of CNP the idea of cognitive system engineering has been insisted on,which claims that human and computer intelligence should be combined together to solve the complex engineering problems cooperatively.Practical applications have shown that not only the optimal plan can be automatically reached with many complicated factors considered, but also the computation,analysis and graphic drawing burden can be released considerably.
文摘In the context of clean and Low-carbon energy transformation and new power system,China^photovoltaic power generation will usher in great development.Its large-scale access impacts the safe and stable operation of the power grid with increasing significance.In order to strengthen the support and Leading roles of the standards,it is urgent to revise the national standard GB/T 29319-2012,Technical requirements for connecting photovoltaic power system to distribution network,based on the current development trend of photovoltaic power generation and power grid transformation needs.This paper firstly interprets the important technical provisions of the standard,then analyzes the problems in its implementation and finally proposes some revision suggestions in terms of grid adaptability,power control and fault crossing,to facilitate safe and orderly development of photovoltaic power generation in China.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
文摘The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.
文摘The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
基金supported by the Postdoctoral Research Funding Program of Jiangsu Province under Grant 2021K622C.
文摘A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.
基金Project supported by the National Natural Science Foundation of China (Nos.70431002, 70401019)
文摘A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering function for complex networks. This method can overcome the biased and inaccurate faults of graphical linear fitting methods commonly used in current network research. Furthermore, it is verified to have higher goodness-of-fit than graphical methods by comparing the KS (Kolmogorov-Smirnov) test statistics for 10 CNN (Connecting Nearest-Neighbor) networks.