期刊文献+
共找到45,110篇文章
< 1 2 250 >
每页显示 20 50 100
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
1
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
The study on the shrink-fit multi-ring flywheel with fall-off function
2
作者 Yu-Jin Wang De-Zhong Wang +2 位作者 Wei-Zhong Guo Jun-Lian Yin Cheng-Wei Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第3期115-122,共8页
Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from... Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from the shaft at a designed fall-off rotation speed, which is determined by the assembly process and the gravity. However, the two factors are ignored in the analytical method based on the Lame's equation. In this work, we conducted fall-off experiments to analyze the two factors and used the experimental data to verify the validity of the analytical method and the finite element method(FEM). The results show that FEM performs better than the analytical method in designing the falloff function of the flywheel, though FEM cannot successfully predict the strain variation with the rotational speed. 展开更多
关键词 multi-ring FLYWHEEL Fall-off rotational speed Shrink-fit assembly Gravity
在线阅读 下载PDF
Optimization method of heat transfer architecture for aircraft fuel thermal management systems 被引量:1
3
作者 Jiangtao XU Haotian TAN +3 位作者 Jitao WU Jiayi HAN Sirong SU Hongqing LYU 《Chinese Journal of Aeronautics》 2025年第8期300-312,共13页
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ... Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture. 展开更多
关键词 fuel thermal management systems Architecture optimization Graph theory fuel heat sink fuel distribution
原文传递
Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer 被引量:1
4
作者 Wenqing Deng Fanfeng Deng +5 位作者 Ting Zhang Junjie Lin Liang Zhao Gang Li Yi Pan Jiebin Yang 《Chinese Chemical Letters》 2025年第3期188-193,共6页
Fuel cell electric vehicles hold great promise for a diverse range of applications in reducing greenhouse gas emissions.In power fuel cell systems,hydrogen fuel serves as an energy vector.To ensure its suitability,it ... Fuel cell electric vehicles hold great promise for a diverse range of applications in reducing greenhouse gas emissions.In power fuel cell systems,hydrogen fuel serves as an energy vector.To ensure its suitability,it is necessary for the quality of hydrogen to adhere to the standards set by ISO 14687:2019,which sets maximum limits for 14 impurities in hydrogen,aiming to prevent any degradation of fuel cell performance.Ammonia(NH_(3))is a prominent pollutant in fuel cells,and accurate measurements of its concentration are crucial for hydrogen fuel cell quantity.In this study,a novel detection platform was developed for determining NH_(3)in real hydrogen samples.The online analysis platform integrates a self-developed online dilution module with a Fourier transform infrared spectrometer(ODM-FTIR).The ODM-FTIR can be operated fully automatically with remote operation.Under the optimum conditions,this method achieved a wide linear range between(50∼1000)nmol/mol.The limit of detection(LOD)was as low as 2 nmol/mol with a relative standard deviation(RSD,n=7)of 3.6%at a content of 50 nmol/mol.To ensure that the quality of the hydrogen products meets the requirement of proton exchange membrane fuel cell vehicles(PEMFCV),the developed ODM-FTIR system was applied to monitor the NH_(3)content in Chengdu Hydrogen Energy Co.,Ltd.for 21 days during Chengdu 2021 FISU World University Games.The proposed method retains several unique advantages,including a low detection limit,excellent repeatability,high accuracy,high speed,good stability,and calibration flexibility.It is an effective analytical method for accurately quantifying NH_(3)in hydrogen,especially suitable for online analysis.It also provides a new idea for the analysis of other impurity components in hydrogen. 展开更多
关键词 fuel cell electric vehicles Hydrogen fuel ODM-FTIR NH_(3) IMPURITY Online analysis
原文传递
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:2
5
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
Association between Solid Cooking Fuel Use and Frailty Trajectories:Findings from a Nationwide Cohort in China 被引量:1
6
作者 Yang Liu Bingjie Wu +4 位作者 Bingbing Fan Chunxia Li Chang Su Aidong Liu Tao Zhang 《Biomedical and Environmental Sciences》 2025年第6期653-665,共13页
Objective Burning solid cooking fuel contributes to household air pollution and is associated with frailty.However,how solid cooking fuel use contributes to the development of frailty has not been well illustrated.Met... Objective Burning solid cooking fuel contributes to household air pollution and is associated with frailty.However,how solid cooking fuel use contributes to the development of frailty has not been well illustrated.Methods This study recruited 8,947 participants aged≥45 years from the China Health and Retirement Longitudinal Study,2011–2018.Group-based trajectory modeling was employed to identify frailty trajectories.Multinomial logistic regression was used to assess the association between solid cooking fuel use and frailty trajectories.Population-attributable fractions were used to estimate the frailty burden from solid fuel use.Results We identified three frailty trajectories:low-stable(n=5,789),moderate-increasing(n=2,603),and fast-increasing(n=555).Solid fuel use was associated with higher odds of being in the moderate-increasing(OR:1.24,95%CI:1.08–1.42)and fast-increasing(OR:1.48,95%CI:1.14–1.92)trajectories.These associations were strengthened by longer solid fuel use(P for trend<0.001).Switching to clean fuel significantly reduced the risk of being in these trajectories compared with persistent solid fuel users.Without solid fuel,8%of moderate-and 19%of fast-increasing trajectories demonstrated frailty development like the low-stable group.Conclusion Solid cooking fuel use is associated with frailty trajectories in middle-aged and older Chinese populations. 展开更多
关键词 Solid fuel Ageing FRAILTY Longitudinal studies
暂未订购
Tuning negative thermal expansion in Sm_(0.85)Zn_(0.15)MnO_(3−δ)via synthesis optimization for enhancing the stability of heterostructured solid oxide fuel cell cathodes 被引量:1
7
作者 Jakub Fudalewski Piotr Winiarz Kun Zheng 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2689-2698,共10页
Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne... Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs). 展开更多
关键词 negative thermal expansion solid oxide fuel cell cathodes for solid oxide fuel cells sol-gel synthesis method
在线阅读 下载PDF
3D printed hybrid rocket fuels with μAl core-shell particles coated with polyvinylidene fluoride and polydopamine: Enhanced combustion characteristics 被引量:2
8
作者 Qihang Chen Xiaolong Fu +6 位作者 Weitao Yang Suhang Chen Zhiming Guo Rui Hu Huijie Zhang Lianpeng Cui Xu Xia 《Defence Technology(防务技术)》 2025年第4期59-70,共12页
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have... 3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion. 展开更多
关键词 Hybrid propulsion Regression rate 3D print fuels Micro aluminum CORE-SHELL mAl@PDA@PVDF
在线阅读 下载PDF
Overcoming poisoning issues in hydrogen fuel cells with face-centered tetragonal FePt bimetallic catalysts 被引量:1
9
作者 Daeil Choi Injoon Jang +2 位作者 Taekyung Lee Yun Sik Kang Sung Jong Yoo 《Journal of Materials Science & Technology》 2025年第4期308-316,共9页
Hydrogen fuel cells are expected to play a central role in the next-generation energy paradigm.However,owing to practical limitations,hydrogen is supplied in the form of refined hydrocarbons or alcohols in industrial ... Hydrogen fuel cells are expected to play a central role in the next-generation energy paradigm.However,owing to practical limitations,hydrogen is supplied in the form of refined hydrocarbons or alcohols in industrial applications.Among them,methanol is widely used as a hydrogen source,and CO is inevitably generated during its oxidation process.Even a small amount of CO(∼20 ppm)strongly binds to Pt used as a catalyst,and deactivates it.In addition to CO,surface adsorption of organic cations by binder or ionomer use in alkaline fuel cells is also one of the poisoning issues to be overcome.Herein,we propose FePt bimetallic catalysts that can resist unavoidable CO and organic cation poisoning.Our synthetic strategy,including annealing and acid treatment,allows the catalysts to possess different alloying degrees and surface structures,which in turn induce different levels of resistance to CO and organic-cation poisonings.The correlation between the surface and bulk structures of the catalysts and poisoning resistance was elucidated through X-ray photoemission spectroscopy and electrochemical analysis.The results revealed that an FePt catalyst having an ordered atomic arrangement displayed a better poisoning resistance than that having a disordered arrangement. 展开更多
关键词 fuel cell Intermetallic structure Alloying degree CO resistance Cation adsorption
原文传递
Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells 被引量:1
10
作者 Siming Li Enyang Sun +8 位作者 Pengfei Wei Wei Zhao Suizhu Pei Ying Chen Jie Yang Huili Chen Xi Yin Min Wang Yawei Li 《Chinese Journal of Catalysis》 2025年第5期277-288,共12页
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele... Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies. 展开更多
关键词 fuel cell ELECTROCATALYSIS Oxygen reduction reaction Ionic liquid Non-platinum group metal
在线阅读 下载PDF
Mechanism of Bronsted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel 被引量:1
11
作者 Ying Chen Yumei Shu +7 位作者 Minhua Ai Wenbiao Chen Chengwen Liu Songyi Zhang Shaojie Wang Haopeng Shi Ji-Jun Zou Lun Pan 《Green Energy & Environment》 2025年第3期585-597,共13页
Photoinduced[2+2]cycloaddition of biomass-derived cycloolefin is a promising approach to synthesize high-energy bio-fuels,however,the conversion efficiency and selectivity are still low.Herein,we provide an acid-promo... Photoinduced[2+2]cycloaddition of biomass-derived cycloolefin is a promising approach to synthesize high-energy bio-fuels,however,the conversion efficiency and selectivity are still low.Herein,we provide an acid-promoted photocycloaddition approach to synthesize a new kind of spiral fuel from biomass-derived cyclohexanone (CHOE) and camphene (CPE).BrΦnsted acids show higher catalytic activity than Lewis acids,and acetic acid (HOAc) possesses the best catalytic performance,with CHOE conversion up to 99.1%.Meanwhile,the HOAc-catalytic effect has been confirmed for[2+2]photocycloaddition of other biomass-derived ketenes and olefins.The catalytic mechanism and dynamics have been investigated,and show that HOAc can bond with C=O groups of CHOE to form H–CHOE complex,which leads to higher light adsorption and longer triplet lifetime.Meanwhile,H–CHOE complex reduces the energy gap between CHOE LUMO and CPE HOMO,shortens the distance of ring-forming atoms,and then decreases the energy barrier (from 103.3 kcal mol^(-1)to 95.8 kcal mol^(-1)) of rate-limiting step.After hydrodeoxygenation,the targeted bio-spiral fuel shows high density of 0.992 g cm^(-3),high neat heat of combustion of 41.89 MJ L^(-1),low kinetic viscosity of 5.69 mm^(2)s^(-1)at 20℃,which is very promising to serve as high-performance aerospace fuel. 展开更多
关键词 BIOfuel Bronsted acid catalysis Spiral fuel [2+2]photocycloaddition
在线阅读 下载PDF
Enhancing performance and stability of Sm_(0.2)Ce_(0.8)O_(1.9)-decorated La0.6Sr0.4CoO3−δ composite cathode in flat-tube solid oxide fuel cell 被引量:1
12
作者 Zixiang Pei Jie Zhang +5 位作者 Yang Zhang Lizeng Han Tiancheng Fan Yang Wu Jianxin Wang Wanbing Guan 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2676-2688,共13页
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca... The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material. 展开更多
关键词 solid oxide fuel cell composite cathode lanthanum strontium cobalt oxide samarium-doped cerium oxide thermal expan-sion flat tube
在线阅读 下载PDF
Application of Sr_(2)FeMoO_(6−δ)-based medium entropy oxide as an anode internal reforming catalyst in solid oxide fuel cells fueled by low -concentration coal mine methane 被引量:1
13
作者 Chuanqi Sun Jinke Zhang +7 位作者 Xiuyang Qian Mingfei Li Hongming Liu Jiangbo Dong Jinda Li Wenlin Yang Mumin Rao Yihan Ling 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2650-2658,共9页
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi... Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs. 展开更多
关键词 solid oxide fuel cell medium entropy oxide low-concentration coal mine methane anode internal reforming catalyst electro-chemical performance
在线阅读 下载PDF
美国Circularity Fuels公司在紧凑型装置中将沼气成功转化为合成气
14
作者 汤玮健(摘译) 《石油炼制与化工》 北大核心 2025年第12期60-60,共1页
美国Circularity Fuels公司利用加州中央谷地一家奶牛场的沼气,通过一个紧凑型的电动处理装置,成功将其转化为合成气,这是可持续航空燃料(SAF)的关键前体。该装置的成本仅为传统蒸汽甲烷或自热重整器的1%。此次示范项目的成功标志着可... 美国Circularity Fuels公司利用加州中央谷地一家奶牛场的沼气,通过一个紧凑型的电动处理装置,成功将其转化为合成气,这是可持续航空燃料(SAF)的关键前体。该装置的成本仅为传统蒸汽甲烷或自热重整器的1%。此次示范项目的成功标志着可再生燃料的生产在经济性方面迈出了重要一步,Circularity公司认为这将有助于航空公司满足可持续燃料替代品的相关规定,同时为农民开辟数十亿美元的新收入来源。 展开更多
关键词 Circularity fuels 奶牛场 沼气 加州中央谷地
在线阅读 下载PDF
DGFuels公司与MyRechemical公司签订美国内布拉斯加州SAF装置合同
15
作者 许建耘(摘译) 《石油炼制与化工》 北大核心 2025年第4期159-159,共1页
MAIRE股份有限公司通过其子公司MyRechemical获得DGFuels公司授予的一份早期工程、许可和工艺设计包(PDP)合同,该合同基于MAIRE公司专有的NXCircular TM气化技术,将为DGFuels公司位于美国内斯加州的一家SAF工厂提供气化服务。DGFuels是... MAIRE股份有限公司通过其子公司MyRechemical获得DGFuels公司授予的一份早期工程、许可和工艺设计包(PDP)合同,该合同基于MAIRE公司专有的NXCircular TM气化技术,将为DGFuels公司位于美国内斯加州的一家SAF工厂提供气化服务。DGFuels是一家从事可再生氢气和低排放航空燃料的美国公司,该工厂预计将于2029年投入运营,从残余生物质中生产SAF,年产量为4.5×10^(8)L。拟建的气化和气体处理装置每年可处理1 Mt玉米秸秆。 展开更多
关键词 内布拉斯加州 航空燃料 气化技术 SAF fuel MY
在线阅读 下载PDF
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
16
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells:Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway
17
作者 Kai-Chi Qin Meng-Tian Huo +3 位作者 Yu Liang Si-Yuan Zhu Zi-Hao Xing Jin-Fa Chang 《电化学(中英文)》 北大核心 2025年第8期1-22,共22页
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit... Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization. 展开更多
关键词 Direct ethanol fuel cells Ethanol electrooxidation C-C bond cleavage ELECTROCATALYSIS Anode catalyst
在线阅读 下载PDF
Densification and thermal properties of cylindrical graphite-based fuel elements used in a molten salt reactor
18
作者 WANG Gan WANG Hao-ran +5 位作者 LU Lin-yuan LI Wan-lin CHEN Nan-nan HE Yun ZHONG Ya-juan LIN Jun 《新型炭材料(中英文)》 北大核心 2025年第6期1362-1376,I0059,共16页
Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of t... Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration. 展开更多
关键词 Molten salt reactor Cylindrical fuel element Graphite matrix Thermal properties Molten salt infiltration
在线阅读 下载PDF
Effects of surface topography on performance of carbon coatings in fuel cell titanium bipolar plates
19
作者 Li Yuchen Fan Ruijun +4 位作者 An Bang Liu Nanjun Lu Guangxuan Lu Jinwu Zhou Genshu 《电镀与精饰》 北大核心 2025年第12期1-11,共11页
To investigate the effects of surface morphology on properties of carbon coatings on proton exchange membrane fuel cell(PEMFC)Ti bipolar plate,scanning electron microscope(SEM)and confocal laser scanning microscopy(CL... To investigate the effects of surface morphology on properties of carbon coatings on proton exchange membrane fuel cell(PEMFC)Ti bipolar plate,scanning electron microscope(SEM)and confocal laser scanning microscopy(CLSM)were used for characterization and analysis of different Ti foils.Physical vapor deposition(PVD)and chemical vapor deposition(CVD)were used to fabricate the carbon coatings on different Ti foils with same procedure.The initial contact resistance test results show that the contact resistance of the carbon coating on different Ti foils are nearly same.The electrochemical test results show that the 3#titanium foil coating with greater surface fluctuation has a lower corrosion current density,but the accelerated corrosion results show that the 1#and 2#titanium foil coatings with less surface fluctuation had the lower contact resistance and better durability.In conclusion,the results show that titanium foils with greater surface fluctuations are prone to produce more nucleation sites in growth of coatings,and the as-prepared carbon coating exhibited lower corrosion current density.But the coatings show lower durability due to the internal stress.According to results of potentialdynamic polarization and ICR tests,carbon coating with less surface defects and crack shows better durability in CVD procedure,and the carbon coating with flattened surface shows better durability in PVD procedure. 展开更多
关键词 fuel cell Ti biopolar plate physical vapor deposition surface morphology chemical vapor deposition
在线阅读 下载PDF
Conversion of Solid Wastes to Fuel Energy Resources through Normal and Catalytic Pyrolysis Process Conditions: A Renewable Resources Strategy
20
作者 Kamau P. Muthee Njogu P. Mwangi Ochieng F. Xavier 《Energy and Power Engineering》 2025年第2期13-34,共22页
This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on... This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on conversion of polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) under normal and catalyst mediated process conditions. Plastic wastes were collected from various dumpsites in Nairobi and segregated using plastic resin codes to various classes. Samples were cleaned, dried and shredded to 2 mm and fed into a pyrolysis reactor. The pyrolysis process was conducted at between 220˚C and 420˚C. Pyrolysis gases were condensed in a shell and coil condenser and the incondensable gases were stored in gasbags. Liquid fuels were analysed using Gas chromatograph with a mass spectroscopic detector and Fourier Transform Infrared Spectrometry. The results revealed that the most optimal process conditions were a temperature range of 220˚C - 420˚C at a heating rate of 10˚C per minute. Under these conditions, the oil yields were 53.72% for PP, 62.10% for LDPE, and 64.14% for HDPE. As the heating rate increased from 10˚C/min to 20˚C/min, gas yields increased, rising from 28.05% to 31.12% in PP, 14.96% to 30.62% in LDPE, and 18.51% to 29.49% in HDPE. The introduction of Fe2O3 and Al2O3 catalyst significantly enhanced gas production during pyrolysis, increasing yields from 18% to 61% and 47% respectively. 展开更多
关键词 PYROLYSIS Alternative fuels PLASTIC VALORIZATION POLYPROPYLENE High Density Polyethylene Low Density Polyethylene
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部