Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the sy...Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in ...The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in a wide area,making it very promising in 6G.As data traffic in TSNs surges,the integrated management for caching,computing,and communication(3C)has attracted much research attention.In this paper,we investigate the multi-resource management in the uplink and downlink transmission of TSN,respectively.In particularly,we aim to guarantee both throughput fairness and data security in the uplink transmission of TSN.Considering the intermittent communication of the satellite,we introduce two kinds of relays,i.e.,terrestrial relays(TRs)and aerial relays(ARs)to improve the system throughput performance in the downlink transmission of TSN.Finally,we study a specific case of TSN with the uplink and downlink transmission,and the corresponding simulation results validate the effectiveness of our proposed schemes.展开更多
This paper addresses multi-resource fair allocation: a fundamental research topic in cloud computing. To improve resource utilization under well-studied fairness constraints, we propose a new allocation mechanism call...This paper addresses multi-resource fair allocation: a fundamental research topic in cloud computing. To improve resource utilization under well-studied fairness constraints, we propose a new allocation mechanism called Dominant Resource with Bottlenecked Fairness(DRBF), which generalizes Bottleneck-aware Allocation(BAA) to the settings of Dominant Resource Fairness(DRF). We classify users into different queues by their dominant resources. The goals are to ensure that users in the same queue receive allocations in proportion to their fair shares while users in different queues receive allocations that maximize resource utilization subject to well-studied fairness properties such as those in DRF. Under DRBF, no user 1) is worse off sharing resources than dividing resources equally among all users; 2) prefers the allocation of another user; 3) can improve their own allocation without reducing other users' allocations; and(4) can benefit by misreporting their resource demands. Experiments demonstrate that the proposed allocation policy performs better in terms of high resource utilization than does DRF.展开更多
Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultra...Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultramafic rocks. These rocks are very important to understand the evolution of the Paleo-Tethyan Ocean. However, the Babu ophiolite is still disputed and the mafic and ultramafic rocks have been inferred to be part of the Emeishan large igneous province (LIP) by some researchers. In this paper, we present zircon U-Pb data on the metabasalts in Malipo to reveal the formation time of mafic and ultramafic rocks and their tectonic nature.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Crato...1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).展开更多
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut...In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.展开更多
Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual stati...Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon explorati...Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon exploration.By analysing the geochemistry and reservoir characteristics of Jurassic lacustrine shales in Sichuan Basin,this study recovers their paleoenvironments and further discusses paleoenvironmental constraints on pore structure.The results show that the Lower Jurassic lacustrine shales in the Sichuan Basin are in a warm and humid semi-anoxic to anoxic lake environment with high productivity,a strong stagnant environment,and a rapid sedimentation rate,with water depths ranging from about 11.54-55.22 m,and a mixture of type Ⅱ/Ⅲ kerogen is developed.In terms of reservoir characteristics,they are dominated by open-slit pores,and the pores are relatively complex.The percentage of mesopores is the highest,while the percentage of macropores is the lowest.Further analysis shows that paleoclimate controls the overall pore complexity and surface relaxation of shales by influencing the weathering rate of mother rocks.Paleoredox conditions control the proportion and complexity of shale pores by influencing TOC content.The research results will provide theoretical basis for improving the exploration efficiency of lacustrine shale resources and expanding exploration target areas.展开更多
Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior knowledge.This is achieved by leveraging the property of adversarial examples.That is,when generated from a surrogate model,they re...Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior knowledge.This is achieved by leveraging the property of adversarial examples.That is,when generated from a surrogate model,they retain their features if applied to other models due to their good transferability.However,adversarial examples often exhibit overfitting,as they are tailored to exploit the particular architecture and feature representation of source models.Consequently,when attempting black-box transfer attacks on different target models,their effectiveness is decreased.To solve this problem,this study proposes an approach based on a Regularized Constrained Feature Layer(RCFL).The proposed method first uses regularization constraints to attenuate the initial examples of low-frequency components.Perturbations are then added to a pre-specified layer of the source model using the back-propagation technique,in order to modify the original adversarial examples.Afterward,a regularized loss function is used to enhance the black-box transferability between different target models.The proposed method is finally tested on the ImageNet,CIFAR-100,and Stanford Car datasets with various target models,The obtained results demonstrate that it achieves a significantly higher transfer-based adversarial attack success rate compared with baseline techniques.展开更多
The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
Solving constrained multi-objective optimization problems(CMOPs)is a challenging task due to the presence of multiple conflicting objectives and intricate constraints.In order to better address CMOPs and achieve a bal...Solving constrained multi-objective optimization problems(CMOPs)is a challenging task due to the presence of multiple conflicting objectives and intricate constraints.In order to better address CMOPs and achieve a balance between objectives and constraints,existing constrained multi-objective evolutionary algorithms(CMOEAs)predominantly focus on devising various strategies by leveraging the relationships between objectives and constraints,and the designed strategies usually are effective for the problems with simple constraints.However,these methods most ignore the relationship between decision variables and constraints.In fact,the essence of optimization is to find appropriate decision variables to meet various complex constraints.Therefore,it is hoped that the problem can be analyzed from the perspective of decision variables,so as to obtain more excellent results.Based on the above motivation,this paper proposes a decision variables classification approach,according to the relationship between decision variables and constraints,variables are divided into constraint-related(CR)variables and constraintindependent(CI)variables.Consequently,by optimizing these two types of variables independently,the population can sustain a favorable balance between feasibility and diversity.Furthermore,specific offspring generation strategies are proposed for the two categories of decision variables in order to achieve rapid convergence while maintaining population diversity.Experimental results on 31 test problems as well as 20 real-world problems demonstrate that the proposed algorithm is competitive compared to some state-of-the-art constrained multi-objective optimization algorithms.展开更多
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying...Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
Switched systems play an imperative role in modeling many real industrial systems with abrupt changes.Due to possible exposure to unreliable and complex physical environments,switching dynamics may simultaneously face...Switched systems play an imperative role in modeling many real industrial systems with abrupt changes.Due to possible exposure to unreliable and complex physical environments,switching dynamics may simultaneously face multiple faults,including the unexpected controller disconnect,the temporary mismatch between subsystems and desired corresponding controllers,and the intermittent disordering of mode transitions.These commonly arising faults may result in severe and detrimental impacts on the reliability and convergence of the closed-loop solution,thereby bringing significant yet challenging issues to be tackled.This paper provides the first attempt to investigate the stabilization problem for a class of constrained switched linear systems with multiple faults under mode-dependent dwell time(MDT).From a set-theory perspective,we demonstrate a critical necessary and sufficient stability condition for switched systems without uncertainties.Moreover,the non-conservative stability criterion is further extended to the perturbed switched systems with rigorous proof.A switching communication network example verifies the validity of the theoretical result and demonstrates their advantages.展开更多
基金supported by the National Science and Technology Plan (Major Project of the Eleventh Five-Year Plan,Grant No. 2006BAB04A13)the Philosophy and Social Science Fund of the Education Department of Jiangsu Province (Grant No.07SJD630006)+2 种基金the Third Key Discipline (Techno-Economics and Management) of the 211 Projectthe Key Discipline of Jiangsu Province (Engineering and Project Management)the Office of the South-to-North Water Diversion Project Construction Committee under the State Council
文摘Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金the National Natural Science Foundation of China under Grant 61701054the Fundamental Research Funds for the Central University under Grants 2020CDJQY-A001 and 2021CDJQY-013。
文摘The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in a wide area,making it very promising in 6G.As data traffic in TSNs surges,the integrated management for caching,computing,and communication(3C)has attracted much research attention.In this paper,we investigate the multi-resource management in the uplink and downlink transmission of TSN,respectively.In particularly,we aim to guarantee both throughput fairness and data security in the uplink transmission of TSN.Considering the intermittent communication of the satellite,we introduce two kinds of relays,i.e.,terrestrial relays(TRs)and aerial relays(ARs)to improve the system throughput performance in the downlink transmission of TSN.Finally,we study a specific case of TSN with the uplink and downlink transmission,and the corresponding simulation results validate the effectiveness of our proposed schemes.
基金financial support of the Oversea Study Program of the Guangzhou Elite Project(GEP)supported by the National Natural Science Foundation of China under Grant 61471173Guangdong Science Technology Project(no:2017A010101027)
文摘This paper addresses multi-resource fair allocation: a fundamental research topic in cloud computing. To improve resource utilization under well-studied fairness constraints, we propose a new allocation mechanism called Dominant Resource with Bottlenecked Fairness(DRBF), which generalizes Bottleneck-aware Allocation(BAA) to the settings of Dominant Resource Fairness(DRF). We classify users into different queues by their dominant resources. The goals are to ensure that users in the same queue receive allocations in proportion to their fair shares while users in different queues receive allocations that maximize resource utilization subject to well-studied fairness properties such as those in DRF. Under DRBF, no user 1) is worse off sharing resources than dividing resources equally among all users; 2) prefers the allocation of another user; 3) can improve their own allocation without reducing other users' allocations; and(4) can benefit by misreporting their resource demands. Experiments demonstrate that the proposed allocation policy performs better in terms of high resource utilization than does DRF.
基金supported by the National Natural Science Foundation of China(grant No.41502109)the 973 Program(grant No.2015CB453000)the China Postdoctoral Science Foundation(grant No. 2015M582528)
文摘Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultramafic rocks. These rocks are very important to understand the evolution of the Paleo-Tethyan Ocean. However, the Babu ophiolite is still disputed and the mafic and ultramafic rocks have been inferred to be part of the Emeishan large igneous province (LIP) by some researchers. In this paper, we present zircon U-Pb data on the metabasalts in Malipo to reveal the formation time of mafic and ultramafic rocks and their tectonic nature.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金supported by the NSFC (41373039)the DREAM project of MOST, China (2016YFC0600403)
文摘1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).
基金The authors gratefully acknowledge the support of the Enhancement Strategy of Multi-Type Energy Integration of Active Distribution Network(YNKJXM20220113).
文摘In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20060280003)Shanghai Leading Academic Dis-cipline Project (T0102)
文摘Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
基金supported from the Opening fund of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(33550000-22-ZC0613-0297)National Natural Science Foundation of China(42102196)the Natural Science Basis Research Plan in Shaanxi Province of China(2022JM-147).
文摘Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon exploration.By analysing the geochemistry and reservoir characteristics of Jurassic lacustrine shales in Sichuan Basin,this study recovers their paleoenvironments and further discusses paleoenvironmental constraints on pore structure.The results show that the Lower Jurassic lacustrine shales in the Sichuan Basin are in a warm and humid semi-anoxic to anoxic lake environment with high productivity,a strong stagnant environment,and a rapid sedimentation rate,with water depths ranging from about 11.54-55.22 m,and a mixture of type Ⅱ/Ⅲ kerogen is developed.In terms of reservoir characteristics,they are dominated by open-slit pores,and the pores are relatively complex.The percentage of mesopores is the highest,while the percentage of macropores is the lowest.Further analysis shows that paleoclimate controls the overall pore complexity and surface relaxation of shales by influencing the weathering rate of mother rocks.Paleoredox conditions control the proportion and complexity of shale pores by influencing TOC content.The research results will provide theoretical basis for improving the exploration efficiency of lacustrine shale resources and expanding exploration target areas.
基金supported by the Intelligent Policing Key Laboratory of Sichuan Province(No.ZNJW2022KFZD002)This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN202302403,KJQN202303111).
文摘Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior knowledge.This is achieved by leveraging the property of adversarial examples.That is,when generated from a surrogate model,they retain their features if applied to other models due to their good transferability.However,adversarial examples often exhibit overfitting,as they are tailored to exploit the particular architecture and feature representation of source models.Consequently,when attempting black-box transfer attacks on different target models,their effectiveness is decreased.To solve this problem,this study proposes an approach based on a Regularized Constrained Feature Layer(RCFL).The proposed method first uses regularization constraints to attenuate the initial examples of low-frequency components.Perturbations are then added to a pre-specified layer of the source model using the back-propagation technique,in order to modify the original adversarial examples.Afterward,a regularized loss function is used to enhance the black-box transferability between different target models.The proposed method is finally tested on the ImageNet,CIFAR-100,and Stanford Car datasets with various target models,The obtained results demonstrate that it achieves a significantly higher transfer-based adversarial attack success rate compared with baseline techniques.
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
基金supported in part by the National Natural Science Foundation of China(U23A20340,62176238,62476254,62106230)the Key Research and Development Projects of the Ministry of Science and Technology of China(2022YFD2001200)+3 种基金the Natural Science Foundation Project of Henan Province(242300420277)the Key Research and Development Program of Henan(251111113900)the Frontier Exploration Projects of Longmen Laboratory(LMQYTSKT031)Chongqing University of Posts and Telecommunications Key Laboratory of Big Data Open Fund Project(BDIC-2023-B-005).
文摘Solving constrained multi-objective optimization problems(CMOPs)is a challenging task due to the presence of multiple conflicting objectives and intricate constraints.In order to better address CMOPs and achieve a balance between objectives and constraints,existing constrained multi-objective evolutionary algorithms(CMOEAs)predominantly focus on devising various strategies by leveraging the relationships between objectives and constraints,and the designed strategies usually are effective for the problems with simple constraints.However,these methods most ignore the relationship between decision variables and constraints.In fact,the essence of optimization is to find appropriate decision variables to meet various complex constraints.Therefore,it is hoped that the problem can be analyzed from the perspective of decision variables,so as to obtain more excellent results.Based on the above motivation,this paper proposes a decision variables classification approach,according to the relationship between decision variables and constraints,variables are divided into constraint-related(CR)variables and constraintindependent(CI)variables.Consequently,by optimizing these two types of variables independently,the population can sustain a favorable balance between feasibility and diversity.Furthermore,specific offspring generation strategies are proposed for the two categories of decision variables in order to achieve rapid convergence while maintaining population diversity.Experimental results on 31 test problems as well as 20 real-world problems demonstrate that the proposed algorithm is competitive compared to some state-of-the-art constrained multi-objective optimization algorithms.
基金supported by the National Natural Science Foundation of China(Nos.42530801,42425208)the Natural Science Foundation of Hubei Province(China)(No.2023AFA001)+1 种基金the MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.MSFGPMR2025-401)the China Scholarship Council(No.202306410181)。
文摘Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金supported in part by the Natural Sciences and Engineering Research Council of Canada(NSERC)supported by the National Natural Science Foundation of China under Grant 62303403Zhejiang Provincial Natural Science Foundation of China under Grants LR25F030004 and LQ24F030022。
文摘Switched systems play an imperative role in modeling many real industrial systems with abrupt changes.Due to possible exposure to unreliable and complex physical environments,switching dynamics may simultaneously face multiple faults,including the unexpected controller disconnect,the temporary mismatch between subsystems and desired corresponding controllers,and the intermittent disordering of mode transitions.These commonly arising faults may result in severe and detrimental impacts on the reliability and convergence of the closed-loop solution,thereby bringing significant yet challenging issues to be tackled.This paper provides the first attempt to investigate the stabilization problem for a class of constrained switched linear systems with multiple faults under mode-dependent dwell time(MDT).From a set-theory perspective,we demonstrate a critical necessary and sufficient stability condition for switched systems without uncertainties.Moreover,the non-conservative stability criterion is further extended to the perturbed switched systems with rigorous proof.A switching communication network example verifies the validity of the theoretical result and demonstrates their advantages.