A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data a...A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.展开更多
In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields loc...In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.展开更多
The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in ...The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in several aspects,and may become the next generation of spacecraft systems with efficient design,fast deployment,flexible application,and convenient management.This paper reviews the development and technology of MRS from three aspects:Modularity,reconfigurability,and autonomy.Despite the progress of research on MRS,there is still a lack of unified standards and little understanding of related concepts.Based on the understanding of basic concepts,the studies conducted on MRS are reviewed to identify technical requirements and solutions.Aiming at the future development trend of MRS,a novel modular selfreconfigurable spacecraft,referred to as MagicSat,is proposed.Furthermore,the MagicSat system composition,advantages,and application prospects are studied.The enabling technologies and major challenges of MRS are further analyzed in terms of modularization,integrated management,and self-reconfiguration technologies.Finally,the future development trend of MRS technology is predicted,and corresponding suggestions are provided.展开更多
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according...Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.展开更多
Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have sign...Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.展开更多
Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio...Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.展开更多
Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed bas...Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.展开更多
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe...Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.展开更多
Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on...Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.展开更多
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame...Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame difference was proposed.Differential motion detection was employed to image sequences and proper threshold was adopted to identify the connected region.Then the motion region was extracted to carry out motion estimation and motion compensation on it.The experiment results show that the encoding efficiency of motion vector is promoted, the complexity of motion estimation is reduced and the quality of the reconstruction image at the same bit-rate as Multi-Resolution Motion Estimation(MRME) is improved.展开更多
A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and m...A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.展开更多
The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the super...The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.展开更多
We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects ...We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects (such as vehicles) tracking multiple moving targets. By using a modified Dijkstra's algorithm, an optimal path between each vehicle-target pair over a weighted grid-presented terrain is computed and updated to eliminate the problem of local minima and losing of tracking. Then, a dynamic path re-planning strategy using multi-resolution representation of a dynamic updating region is proposed to achieve high-performance by trading-off precision for efficiency, while guaranteeing accuracy. Primary experimental results showed that our algorithm successfully achieved l0 to 96 frames per second interactive path-replanning rates during a terrain simulation scenario with 10 to 100 vehicles and multiple moving targets.展开更多
A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and...A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and mobility parts, and is capable of simple self-reconfiguring to enhance its mobility by expanding itself. Several units can not only link into a train or other shapes autonomously via camera and sensors to be a united whole robot for obstacle clearing, but also disjoin to be separate units under control after missions. To achieve small overall size, compact mechanical structures are adopted in modular components design, and a miniature advanced RISC machines (ARM) based embedded controller is developed for minimal power consumption and efficient global control. The docking experiment between two units has also been implemented.展开更多
An understanding of the knowledge creation and diffusion process in the organizational context is extremely relevant. Because from this understanding, organizations can restructure processes, reorient teams and implem...An understanding of the knowledge creation and diffusion process in the organizational context is extremely relevant. Because from this understanding, organizations can restructure processes, reorient teams and implement methodologies to assist in the construction of an evolutionary process of knowledge creation and diffusion aimed at sustainable growth and innovation. The theory of complex social networks has been applied in several fields to help understand organizational cognitive processes. However, these approaches still insipiently consider the analysis of the nestedness and modularity of the studied networks. In this article, we presented an approach that sought to identify patterns of nestedness and modularity in networks of affiliation of people in projects in the organizational context. The study sought to identify these patterns in affiliation networks in a public organization providing information technology services in the period from 2006 to 2013. The detection of these patterns was performed using the NODF (Nestedness metric based on Overlap and Decreasing Fill) algorithm described by <a href="#ref1">[1]</a>. The nestedness and modularity metrics can influence patterns of knowledge creation and diffusion in formal and informal networks constituted for the execution of projects in organizations. This study showed that the network structures of the organization during the study period presented a high degree of nestedness, and it was possible to identify combined structures of nestedness and modularity.展开更多
BACKGROUND This unique presentation of hip swelling is only the seventh reported case of pseudotumor recurrence in a non-metal-on-metal total hip arthroplasty(THA)construct.The constellation of patient symptoms and la...BACKGROUND This unique presentation of hip swelling is only the seventh reported case of pseudotumor recurrence in a non-metal-on-metal total hip arthroplasty(THA)construct.The constellation of patient symptoms and laboratory findings contradict the expected elevated serum metal ion levels associated with the formation of pseudotumor.The presentation,lab trends,and imaging findings contribute to the growing base of knowledge surrounding the effects of corrosion in arthroplasty constructs with stem-neck modularity.CASE SUMMARY A 74-year-old man status post primary THA presented with left hip swelling and elevated serum metal ions five years after implantation of a modular stem-neck prosthesis.The swelling was diagnosed as pseudotumor based on laboratory trends and imaging findings and was treated with revision arthroplasty that completely resolved the initial hip swelling.The patient presented with recurrent hip swelling and recurrent pseudotumor findings on imaging in the same hip four months later.Non-operative management with ultrasound-guided hip aspiration resulted in symptom relief and resolution of the recurrent swelling.After one year of follow-up,the patient had no further recurrences of hip swelling.CONCLUSION This case of post-revision pseudotumor recurrence elucidates attributable patient,surgical,and implant factors with a discussion of diagnostics,management,and prognosis for patients with pseudotumor in non-metal-on-metal arthroplasty constructs.展开更多
The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and featu...The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
基金supported by the National Natural Science Foundation of China(62175034,62175036,32271510)the National Key R&D Program of China(2021YFF0502900)+2 种基金the Science and Technology Research Program of Shanghai(Grant No.19DZ2282100)the Shanghai Key Laboratory of Metasurfaces for Light Manipulation(23dz2260100)the Shanghai Engineering Technology Research Center of Hair Medicine(19DZ2250500).
文摘A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05029-003)CNPC Science Research and Technology Development Project,China(No.2013D-0904)
文摘In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.
基金supported by the National Defense Science and Technology Innovation Zone of China(No.00205501).
文摘The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in several aspects,and may become the next generation of spacecraft systems with efficient design,fast deployment,flexible application,and convenient management.This paper reviews the development and technology of MRS from three aspects:Modularity,reconfigurability,and autonomy.Despite the progress of research on MRS,there is still a lack of unified standards and little understanding of related concepts.Based on the understanding of basic concepts,the studies conducted on MRS are reviewed to identify technical requirements and solutions.Aiming at the future development trend of MRS,a novel modular selfreconfigurable spacecraft,referred to as MagicSat,is proposed.Furthermore,the MagicSat system composition,advantages,and application prospects are studied.The enabling technologies and major challenges of MRS are further analyzed in terms of modularization,integrated management,and self-reconfiguration technologies.Finally,the future development trend of MRS technology is predicted,and corresponding suggestions are provided.
基金supported by the National Natural Science Foundation of China(Grant No.61272279)the TianYuan Special Funds of the National Natural Science Foundation of China(Grant No.11326239)+1 种基金the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Inner Mongolia University of Technology,China(Grant No.ZD201221)
文摘Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.
基金the financial support provided by the National Science & Technology Infrastructure Construction Project of China (2005DKA32300)the Key Science and Technology Project of Henan Province, China (152102110047)+2 种基金the Major Research Project of the Ministry of Education, China(16JJD770019)the Major Scientific and Technological Special Project of Henan Province, China (121100111300)the Cooperation Base Open Fund of the Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River regions and CPGIS (JOF 201602)
文摘Timely crop acreage and distribution information are the basic data which drive many agriculture related applications.For identifying crop types based on remote sensing,methods using only a single image type have significant limitations.Current research that integrates fine and coarser spatial resolution images,using techniques such as unmixing methods,regression models,and others,usually results in coarse resolution abundance without sufficient detail within pixels,and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images.Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels.Firstly,the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper(TM)image based on the Bayesian equation.Then,the winter wheat abundance(acreage fraction in a pixel)is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer(MODIS)time series data.Finally,winter wheat is identified by the proposed Abundance-Membership(AM)model based on the spatial relationship between the two types of pixels.Specifically,winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel.In other words,this method takes advantage of the relative size of membership in a local space,rather than the absolute size in the entire study area.This method is tested in the major agricultural area of Yiluo Basin,China,and the results show that acreage accuracy(Aa)is 93.01%and sampling accuracy(As)is 91.40%.Confusion matrix shows that overall accuracy(OA)is 91.4%and the kappa coefficient(Kappa)is 0.755.These values are significantly improved compared to the traditional Maximum Likelihood classification(MLC)and Random Forest classification(RFC)which rely on spectral features.The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information.Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel,the influence of differences of environmental conditions is greatly reduced.This advantage allows the proposed method to be effectively applied in other places.
基金This project was supported by the National Natural Foundation of China (60404022) and the Foundation of Department ofEducation of Hebei Province (2002209).
文摘Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902085 and 11832009)the Science and Technology Association Young Scientific and Technological Talents Support Project of Guangzhou City(Grant No.SKX20210304)the Natural Science Foundation of Guangdong Province(Grant No.2021Al515010320).
文摘Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.
基金Project supported by the National Natural Science Foundation of China(Grants No.61202262)the Natural Science Foundation of Jiangsu Province,China(Grants No.BK2012328)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grants No.20120092120034)
文摘Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.
基金Project supported by the National Natural Science Foundation of China (No. 60272031), the Hi-Tech Research and Development Program (863) of China (No. 2003AA131032-2), and the Natural Science Foundation of Zhejiang Province (No. M603202), China
文摘Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
基金Supported by the National Natural Science Foundation of China (No. 60803036)the Scientific Research Fund of Heilongjiang Provincial Education Department (No.11531013)
文摘Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame difference was proposed.Differential motion detection was employed to image sequences and proper threshold was adopted to identify the connected region.Then the motion region was extracted to carry out motion estimation and motion compensation on it.The experiment results show that the encoding efficiency of motion vector is promoted, the complexity of motion estimation is reduced and the quality of the reconstruction image at the same bit-rate as Multi-Resolution Motion Estimation(MRME) is improved.
基金Supported by the Natural Science Foundation of Hubei Province (ABAO48)
文摘A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.
基金National Natural Science Foundation of China (11072264)
文摘The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.
基金Project partially supported by NSF (No. CCR0306438) and theBoeing Company, USA
文摘We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects (such as vehicles) tracking multiple moving targets. By using a modified Dijkstra's algorithm, an optimal path between each vehicle-target pair over a weighted grid-presented terrain is computed and updated to eliminate the problem of local minima and losing of tracking. Then, a dynamic path re-planning strategy using multi-resolution representation of a dynamic updating region is proposed to achieve high-performance by trading-off precision for efficiency, while guaranteeing accuracy. Primary experimental results showed that our algorithm successfully achieved l0 to 96 frames per second interactive path-replanning rates during a terrain simulation scenario with 10 to 100 vehicles and multiple moving targets.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA420110)Heilongjiang Province Technology Foundation (No. GB04A502)
文摘A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and mobility parts, and is capable of simple self-reconfiguring to enhance its mobility by expanding itself. Several units can not only link into a train or other shapes autonomously via camera and sensors to be a united whole robot for obstacle clearing, but also disjoin to be separate units under control after missions. To achieve small overall size, compact mechanical structures are adopted in modular components design, and a miniature advanced RISC machines (ARM) based embedded controller is developed for minimal power consumption and efficient global control. The docking experiment between two units has also been implemented.
文摘An understanding of the knowledge creation and diffusion process in the organizational context is extremely relevant. Because from this understanding, organizations can restructure processes, reorient teams and implement methodologies to assist in the construction of an evolutionary process of knowledge creation and diffusion aimed at sustainable growth and innovation. The theory of complex social networks has been applied in several fields to help understand organizational cognitive processes. However, these approaches still insipiently consider the analysis of the nestedness and modularity of the studied networks. In this article, we presented an approach that sought to identify patterns of nestedness and modularity in networks of affiliation of people in projects in the organizational context. The study sought to identify these patterns in affiliation networks in a public organization providing information technology services in the period from 2006 to 2013. The detection of these patterns was performed using the NODF (Nestedness metric based on Overlap and Decreasing Fill) algorithm described by <a href="#ref1">[1]</a>. The nestedness and modularity metrics can influence patterns of knowledge creation and diffusion in formal and informal networks constituted for the execution of projects in organizations. This study showed that the network structures of the organization during the study period presented a high degree of nestedness, and it was possible to identify combined structures of nestedness and modularity.
文摘BACKGROUND This unique presentation of hip swelling is only the seventh reported case of pseudotumor recurrence in a non-metal-on-metal total hip arthroplasty(THA)construct.The constellation of patient symptoms and laboratory findings contradict the expected elevated serum metal ion levels associated with the formation of pseudotumor.The presentation,lab trends,and imaging findings contribute to the growing base of knowledge surrounding the effects of corrosion in arthroplasty constructs with stem-neck modularity.CASE SUMMARY A 74-year-old man status post primary THA presented with left hip swelling and elevated serum metal ions five years after implantation of a modular stem-neck prosthesis.The swelling was diagnosed as pseudotumor based on laboratory trends and imaging findings and was treated with revision arthroplasty that completely resolved the initial hip swelling.The patient presented with recurrent hip swelling and recurrent pseudotumor findings on imaging in the same hip four months later.Non-operative management with ultrasound-guided hip aspiration resulted in symptom relief and resolution of the recurrent swelling.After one year of follow-up,the patient had no further recurrences of hip swelling.CONCLUSION This case of post-revision pseudotumor recurrence elucidates attributable patient,surgical,and implant factors with a discussion of diagnostics,management,and prognosis for patients with pseudotumor in non-metal-on-metal arthroplasty constructs.
文摘The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.