A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data a...A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.展开更多
Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric n...Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric network, and these non-stationary stochastic signals have had effects on the accuracy of the measurement of electric energy. The traditional method like Fourier Analysis can he applied efficiently on the stationary stochastic signals, hut it has little effect on non-stationary stochastic signals. In light of this, the form of the signals of the electric network in wavelet domain will he discussed in this paper. A measurement method of active power based on multi-resolution analysis in the stochastic process is presented. This method has a wider application scope compared with the traditional method Fourier analysis, and it is of good referential value and practical value in terms of raising the level of the existing electric energy measurement.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields loc...In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.展开更多
With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnair...With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.展开更多
To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The R...To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.展开更多
Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clin...Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clinical data from patients who received treatment in the Department of Orthopedics and the Department of Acupuncture and Moxibustion at our hospital from January 1,2023,to December 31,2023.The study compared the costs of medications,examinations,treatments,laboratory tests,nursing and other expenses,and total treatment costs between the two departments.It analyzed the cost structure of the two departments and proposed further improvement suggestions.Results:The study results indicated that the total costs in the Department of Acupuncture and Moxibustion were significantly higher than those in the Department of Orthopedics.Among medication costs,the total medication costs in the Department of Orthopedics were higher than those in the Department of Acupuncture and Moxibustion,with costs for Western medicine,proprietary Chinese medicine,and herbal medicine all being higher(p<0.05).Regarding examination costs,consultation fees in the Department of Orthopedics were lower than those in the Department of Acupuncture and Moxibustion,while examination costs were higher(p<0.05).In terms of treatment costs,orthopedic treatment and surgical fees were higher than those in the Department of Acupuncture and Moxibustion(p<0.05).For laboratory test costs,orthopedic laboratory fees were significantly higher than those in the Department of Acupuncture and Moxibustion(p<0.05).Among nursing and other expenses,orthopedic blood transfusion,bed fees,and other expenses were higher than those in the Department of Acupuncture and Moxibustion,while nursing fees were lower(p<0.05).Conclusion:Treatment fees in the Department of Acupuncture and Moxibustion are the core and account for a relatively high proportion of the total costs.The benefits generated by the Department of Orthopedics are primarily derived from medication,examination,and laboratory fees,aligning with the characteristics of combining diagnosis,medication,and surgical intervention in orthopedic treatment.Consultation fees,nursing fees,and bed fees in the Department of Acupuncture and Moxibustion are higher than those in the Department of Orthopedics,indicating a longer treatment cycle in acupuncture,which warrants clinical attention.展开更多
The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ...The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the super...The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.展开更多
A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement s...A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.展开更多
In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is ...In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.展开更多
This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the ...This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.展开更多
In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is deve...In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.展开更多
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engin...On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
基金supported by the National Natural Science Foundation of China(62175034,62175036,32271510)the National Key R&D Program of China(2021YFF0502900)+2 种基金the Science and Technology Research Program of Shanghai(Grant No.19DZ2282100)the Shanghai Key Laboratory of Metasurfaces for Light Manipulation(23dz2260100)the Shanghai Engineering Technology Research Center of Hair Medicine(19DZ2250500).
文摘A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.
文摘Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric network, and these non-stationary stochastic signals have had effects on the accuracy of the measurement of electric energy. The traditional method like Fourier Analysis can he applied efficiently on the stationary stochastic signals, hut it has little effect on non-stationary stochastic signals. In light of this, the form of the signals of the electric network in wavelet domain will he discussed in this paper. A measurement method of active power based on multi-resolution analysis in the stochastic process is presented. This method has a wider application scope compared with the traditional method Fourier analysis, and it is of good referential value and practical value in terms of raising the level of the existing electric energy measurement.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05029-003)CNPC Science Research and Technology Development Project,China(No.2013D-0904)
文摘In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.
基金Sponsored by The Youth Project of National Social Science Foundation of China(21CTY007)Special Fund for Basic Scientific Research Business Expenses of Central Universities(2024DAWH008).
文摘With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.
基金supported by the National Key Research and Development Program(MOST 2023YFA1606404 and MOST 2022YFA1602303)the National Natural Science Foundation of China(Nos.12347106,12147101,and 12447122)the China Postdoctoral Science Foundation(No.2024M760489).
文摘To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.
文摘Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clinical data from patients who received treatment in the Department of Orthopedics and the Department of Acupuncture and Moxibustion at our hospital from January 1,2023,to December 31,2023.The study compared the costs of medications,examinations,treatments,laboratory tests,nursing and other expenses,and total treatment costs between the two departments.It analyzed the cost structure of the two departments and proposed further improvement suggestions.Results:The study results indicated that the total costs in the Department of Acupuncture and Moxibustion were significantly higher than those in the Department of Orthopedics.Among medication costs,the total medication costs in the Department of Orthopedics were higher than those in the Department of Acupuncture and Moxibustion,with costs for Western medicine,proprietary Chinese medicine,and herbal medicine all being higher(p<0.05).Regarding examination costs,consultation fees in the Department of Orthopedics were lower than those in the Department of Acupuncture and Moxibustion,while examination costs were higher(p<0.05).In terms of treatment costs,orthopedic treatment and surgical fees were higher than those in the Department of Acupuncture and Moxibustion(p<0.05).For laboratory test costs,orthopedic laboratory fees were significantly higher than those in the Department of Acupuncture and Moxibustion(p<0.05).Among nursing and other expenses,orthopedic blood transfusion,bed fees,and other expenses were higher than those in the Department of Acupuncture and Moxibustion,while nursing fees were lower(p<0.05).Conclusion:Treatment fees in the Department of Acupuncture and Moxibustion are the core and account for a relatively high proportion of the total costs.The benefits generated by the Department of Orthopedics are primarily derived from medication,examination,and laboratory fees,aligning with the characteristics of combining diagnosis,medication,and surgical intervention in orthopedic treatment.Consultation fees,nursing fees,and bed fees in the Department of Acupuncture and Moxibustion are higher than those in the Department of Orthopedics,indicating a longer treatment cycle in acupuncture,which warrants clinical attention.
基金funded by the Bavarian State Ministry of ScienceResearch and Art(Grant number:H.2-F1116.WE/52/2)。
文摘The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
基金National Natural Science Foundation of China (11072264)
文摘The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.
基金financial support by the Open Foundation of Chongqing Key Laboratory of Geomechanics and Geoenvironment Protection(Logistical Engineering University)(No.GKLGGP 2013-02)
文摘A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.
文摘In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.
文摘This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.
文摘In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
文摘On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.