Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
The single reference second order Brillouin-Wigner perturbation theory recently developed, which eliminates its size-extensivity error, has been generalized to state-specific, multi-reference (SS-MR), BWPT2 providin...The single reference second order Brillouin-Wigner perturbation theory recently developed, which eliminates its size-extensivity error, has been generalized to state-specific, multi-reference (SS-MR), BWPT2 providing a size-extensive correction to the electron correlation problem for systems that demand the use of a multi-reference function. Illustrative numerical tests of the size-extensivity corrections are made for widely used molecules in their ground states, which are pronounced multi-reference characteristics. We have implemented two-reference and three-reference cases for CH2, BH and bond breaking process in the ground states of HF molecules. The results are compared with the rigorously size-extensive methods such as the M^ller-Plesset perturbation theory, i.e., MP2, full configuration interaction (Full-CI) and allied methods using the same basis sets.展开更多
The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell elec...The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction spac...The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction space. Although all Bω bases generate the same CI space, the corresponding configurations of each Bω base have distinct quantum-mechanical information contents. In previous works, we have introduced a multi-reference configuration interaction method, based on the multiple extremes of the Hartree-Fock problem. This method was applied to calculate the permanent electrical dipole and quadrupole moments of some small molecules using minimal and double, triple and polarized double-zeta bases. In all cases were possible, using a reduced number of configurations, to obtain dipole and quadrupole moments in close agreement with the experimental values and energies without compromising the energy of the state function. These results show the positive effect of the use of the multi-reference Hartree-Fock bases that allowed a better extraction of quantum mechanical information from the several Bω bases. But to extend these ideas for larger systems and atomic bases, it is necessary to develop criteria to build the multireference Hartree-Fock bases. In this project, we are beginning a study of the non-uniform distribution of quantum-mechanical information content of the Bω bases, searching identify the factors that allowed obtain the good results cited展开更多
Various configuration-based multi-reference second order perturbation approaches were investigated and a new scheme averting intruder states was suggested. The codes based on these schemes were tested by example calcu...Various configuration-based multi-reference second order perturbation approaches were investigated and a new scheme averting intruder states was suggested. The codes based on these schemes were tested by example calculations.展开更多
A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, a...A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, and avoids intruder states in constructions of the potential energy surface, which is confirmed by a series of comparable calculations. The new MRPT2 program is an available tool for the research of molecular excited states and electronic spectrum.展开更多
Nine low-lying electronic states of the AsP molecule, including ∑+, ∏, and A symmetries with singlet, triplet, and quintet spin multiplicities, are studied using multi-reference configuration interaction method. Th...Nine low-lying electronic states of the AsP molecule, including ∑+, ∏, and A symmetries with singlet, triplet, and quintet spin multiplicities, are studied using multi-reference configuration interaction method. The potential energy curves and the spectroscopic constants of these nine states are determined, and compared with the experimental observed data as well as other theoretical works available at present. Three quintet states are reported for the first time. Furthermore, the analytical potential energy functions of these states are fitted using Murrell-Sorbie function and least sauare fitting method.展开更多
Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large...Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.展开更多
Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the ...Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.展开更多
A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configur...A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configuration interaction level with Davidson correction using the aug-cc-pV5Z basis set. In the entrance channel the spin-orbit coupling energy is also included.展开更多
This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence intern...This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.展开更多
The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a ...The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.展开更多
Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been establi...Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.展开更多
High-level ab initio calculations of aluminum monoiodide(AlI) molecule are performed by utilizing the multireference configuration interaction plus Davidson correction(MRCI+Q) method. The core-valence correlation(CV) ...High-level ab initio calculations of aluminum monoiodide(AlI) molecule are performed by utilizing the multireference configuration interaction plus Davidson correction(MRCI+Q) method. The core-valence correlation(CV) and spin–orbit coupling(SOC) effect are considered. The adiabatic potential energy curves(PECs) of a total of 13 Λ–S states and 24 ? states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ–S states are analyzed with the aid of the spin–orbit matrix elements. Finally, the transition properties including transition dipole moment(TDM),Frank–Condon factors(FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.展开更多
A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration in...A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.展开更多
Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl ...Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.展开更多
High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scala...High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scalar relativistic corrections are included into the present calculations at the same time. The potential energy curve (PEC) of the ground state, all of the vibrational levels and spectroscopic parameters are fitted. The results show that the levels and spectroscopic parameters are in good agreement with the available experimental data. The analytical potential energy function (APEF) is also deduced from the calculated PEC using the Murrell-Sorbie (M-S) potential function. The present results can provide a helpful reference for the future spectroscopic experiments or dynamical calculations of the molecule.展开更多
The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculati...The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculations. The ground state of OsO is unexpectedly the closed-shell1Σ+state with a double bond instead of the previously reported3Φ or5Σ+state;after including the spin–orbit coupling effects, the ground state becomes3Π2. With the help of the theoretical spectroscopic constants and transition dipole moments, the emission spectra in the region of 405 nm–875 nm are assigned.Our results will facilitate the future studies of absorption and emission spectra of OsO.展开更多
The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all o...The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all of the vibrational and rotational levels of the 13C14N molecule are obtained by solving the Schrrdinger equation of the molecular nuclear motion. The spectroscopic parameters are determined by fitting the Dunham coefficients with the levels. Both the levels and the spectroscopic parameters are in good qualitative agreement with the experimental data available. The analytical potential energy functions are also deduced from the calculated PECs. The present results can provide a helpful reference for future spectroscopy experiments or dynamical calculations of the molecule.展开更多
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
基金Supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No 2219-1/2013
文摘The single reference second order Brillouin-Wigner perturbation theory recently developed, which eliminates its size-extensivity error, has been generalized to state-specific, multi-reference (SS-MR), BWPT2 providing a size-extensive correction to the electron correlation problem for systems that demand the use of a multi-reference function. Illustrative numerical tests of the size-extensivity corrections are made for widely used molecules in their ground states, which are pronounced multi-reference characteristics. We have implemented two-reference and three-reference cases for CH2, BH and bond breaking process in the ground states of HF molecules. The results are compared with the rigorously size-extensive methods such as the M^ller-Plesset perturbation theory, i.e., MP2, full configuration interaction (Full-CI) and allied methods using the same basis sets.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2010GB104003)the Fundamental Research Funds for the Central Universities,China (Grant No. 450060481375)
文摘The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
文摘The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction space. Although all Bω bases generate the same CI space, the corresponding configurations of each Bω base have distinct quantum-mechanical information contents. In previous works, we have introduced a multi-reference configuration interaction method, based on the multiple extremes of the Hartree-Fock problem. This method was applied to calculate the permanent electrical dipole and quadrupole moments of some small molecules using minimal and double, triple and polarized double-zeta bases. In all cases were possible, using a reduced number of configurations, to obtain dipole and quadrupole moments in close agreement with the experimental values and energies without compromising the energy of the state function. These results show the positive effect of the use of the multi-reference Hartree-Fock bases that allowed a better extraction of quantum mechanical information from the several Bω bases. But to extend these ideas for larger systems and atomic bases, it is necessary to develop criteria to build the multireference Hartree-Fock bases. In this project, we are beginning a study of the non-uniform distribution of quantum-mechanical information content of the Bω bases, searching identify the factors that allowed obtain the good results cited
文摘Various configuration-based multi-reference second order perturbation approaches were investigated and a new scheme averting intruder states was suggested. The codes based on these schemes were tested by example calculations.
基金Supported by the National High Technical Development Project (863 project) Foundation (Grant No. 2006AA01A119)the National Natural Science Foundation of China (Grant No. 20773168)the Natural Science Foundation of CQUPT (A2008-36)
文摘A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, and avoids intruder states in constructions of the potential energy surface, which is confirmed by a series of comparable calculations. The new MRPT2 program is an available tool for the research of molecular excited states and electronic spectrum.
基金the National Natural Sci-ence Foundation of China under Grant No.10674114.
文摘Nine low-lying electronic states of the AsP molecule, including ∑+, ∏, and A symmetries with singlet, triplet, and quintet spin multiplicities, are studied using multi-reference configuration interaction method. The potential energy curves and the spectroscopic constants of these nine states are determined, and compared with the experimental observed data as well as other theoretical works available at present. Three quintet states are reported for the first time. Furthermore, the analytical potential energy functions of these states are fitted using Murrell-Sorbie function and least sauare fitting method.
基金supported by Shandong Provincial Nat-ural Science Foundation(ZR2024ZD30)the National Natural Science Foundation of China(Nos.22325302 and 22403100).
文摘Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.
基金supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005).
文摘Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
基金This work was supported by the National Natural Science Foundation of China (No.20328304 and 20533060).
文摘A global three dimensional potential energy surface for the F+H2→HF+H reaction has been developed by spline interpolation of about 15,000 symmetry-unique ab initio points, obtained from the multi-reference configuration interaction level with Davidson correction using the aug-cc-pV5Z basis set. In the entrance channel the spin-orbit coupling energy is also included.
基金supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008HASTIT008)
文摘This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)
文摘The potential energy curves(PECs) of the first electronic excited state of S2(a^1△g) are calculated employing a multi-reference configuration interaction method with the Davidson correction in combination with a series of correlationconsistent basis sets from Dunning: aug-cc-p VX Z(X = T, Q, 5, 6). In order to obtain PECs with high accuracy, PECs calculated with aug-cc-p V(Q, 5)Z basis sets are extrapolated to the complete basis set limit. The resulting PECs are then fitted to the analytical potential energy function(APEF) using the extended Hartree–Fock approximate correlation energy method. By utilizing the fitted APEF, accurate and reliable spectroscopic parameters are obtained, which are consistent with both experimental and theoretical results. By solving the Schr o¨dinger equation numerically with the APEFs obtained at the AV6 Z and the extrapolated AV(Q, 5)Z level of theory, we calculate the complete set of vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants.
基金Sponsored by the National Defense Science and Technology Laboratory Foundation (9140C3601130802)
文摘Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11874179,11574114,and 11874177)the Natural Science Foundation of Jilin Province,China(Grant Nos.20180101289JC)
文摘High-level ab initio calculations of aluminum monoiodide(AlI) molecule are performed by utilizing the multireference configuration interaction plus Davidson correction(MRCI+Q) method. The core-valence correlation(CV) and spin–orbit coupling(SOC) effect are considered. The adiabatic potential energy curves(PECs) of a total of 13 Λ–S states and 24 ? states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ–S states are analyzed with the aid of the spin–orbit matrix elements. Finally, the transition properties including transition dipole moment(TDM),Frank–Condon factors(FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)China Postdoctoral Science Foundation(Grant No.2014M561957)+1 种基金the Postdoctoral Innovation Project of Shandong Province,China(Grant No.201402013)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM022)
文摘A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.
基金Project supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005)。
文摘Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158,91221301,and 11264020)
文摘High level calculations on the ground state of 12Mg1H molecule have been performed using multi-reference configuration interaction (MRCI) method with the Davidson modification. The core-valence correlation and scalar relativistic corrections are included into the present calculations at the same time. The potential energy curve (PEC) of the ground state, all of the vibrational levels and spectroscopic parameters are fitted. The results show that the levels and spectroscopic parameters are in good agreement with the available experimental data. The analytical potential energy function (APEF) is also deduced from the calculated PEC using the Murrell-Sorbie (M-S) potential function. The present results can provide a helpful reference for the future spectroscopic experiments or dynamical calculations of the molecule.
基金Project supported by the National Natural Science Foundation of China (Grant No. 22073072)the Double First-Class University Construction Project of Northwest University。
文摘The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculations. The ground state of OsO is unexpectedly the closed-shell1Σ+state with a double bond instead of the previously reported3Φ or5Σ+state;after including the spin–orbit coupling effects, the ground state becomes3Π2. With the help of the theoretical spectroscopic constants and transition dipole moments, the emission spectra in the region of 405 nm–875 nm are assigned.Our results will facilitate the future studies of absorption and emission spectra of OsO.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174117 and 11374132)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China
文摘The potential energy curves (PECs) of X2∑ and A2П states of the CN molecule have been calculated with the multi- reference configuration interaction method and the aug-cc-pwCVSZ basis set. Based on the PECs, all of the vibrational and rotational levels of the 13C14N molecule are obtained by solving the Schrrdinger equation of the molecular nuclear motion. The spectroscopic parameters are determined by fitting the Dunham coefficients with the levels. Both the levels and the spectroscopic parameters are in good qualitative agreement with the experimental data available. The analytical potential energy functions are also deduced from the calculated PECs. The present results can provide a helpful reference for future spectroscopy experiments or dynamical calculations of the molecule.