The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) metho...The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) method to address these limitations. In the vLEC method, the waverider is directly designed from the preassigned leading edge and the variable shock angle distribution based on the Leading-Edge Cone (LEC) concept. Since the vLEC method is an approximate method, two test waveriders are designed and evaluated using numerical simulations to validate the shock design accuracy and the effectiveness of the vLEC method. The results show that the shocks of the test waveriders coincide well with the preassigned positions. Furthermore, four specifically designed application cases are conducted to analyze the performance benefits of the vLEC waveriders. The results of these cases indicate that, due to their variable shock angle distributions, the vLEC waveriders exhibit higher lift-to-drag ratios and better longitudinal static stability than conventional waveriders. Additionally, the vLEC waveriders demonstrate superior volumetric capacities near the symmetry plane, albeit with a minor decrease in volumetric efficiency.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ...This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom...The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.展开更多
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.展开更多
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c...In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.展开更多
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
In this study,the problem of time-optimal reconnaissance trajectory design for the aeroassisted vehicle is considered.Different from most works reported previously,we explore the feasibility of applying a high-order a...In this study,the problem of time-optimal reconnaissance trajectory design for the aeroassisted vehicle is considered.Different from most works reported previously,we explore the feasibility of applying a high-order aeroassisted vehicle dynamic model to plan the optimal flight trajectory such that the gap between the simulated model and the real system can be narrowed.A highly-constrained optimal control model containing six-degree-of-freedom vehicle dynamics is established.To solve the formulated high-order trajectory planning model,a pipelined optimization strategy is illustrated.This approach is based on the variable order Radau pseudospectral method,indicating that the mesh grid used for discretizing the continuous system experiences several adaption iterations.Utilization of such a strategy can potentially smooth the flight trajectory and improve the algorithm convergence ability.Numerical simulations are reported to demonstrate some key features of the optimized flight trajectory.A number of comparative studies are also provided to verify the effectiveness of the applied method as well as the high-order trajectory planning model.展开更多
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente...Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.U20B2006)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110145)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2022QNRC001).
文摘The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) method to address these limitations. In the vLEC method, the waverider is directly designed from the preassigned leading edge and the variable shock angle distribution based on the Leading-Edge Cone (LEC) concept. Since the vLEC method is an approximate method, two test waveriders are designed and evaluated using numerical simulations to validate the shock design accuracy and the effectiveness of the vLEC method. The results show that the shocks of the test waveriders coincide well with the preassigned positions. Furthermore, four specifically designed application cases are conducted to analyze the performance benefits of the vLEC waveriders. The results of these cases indicate that, due to their variable shock angle distributions, the vLEC waveriders exhibit higher lift-to-drag ratios and better longitudinal static stability than conventional waveriders. Additionally, the vLEC waveriders demonstrate superior volumetric capacities near the symmetry plane, albeit with a minor decrease in volumetric efficiency.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
文摘This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金supported by the National Natural Science Foundation of China (Grant No 10562002)the Natural Science Foundation of Inner Mongolia, China (Grant No 200508010103)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070126002)the Inner Mongolia University Doctoral Scientific Research Starting Foundation
文摘The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11171208 and U1433104)
文摘In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
文摘In this study,the problem of time-optimal reconnaissance trajectory design for the aeroassisted vehicle is considered.Different from most works reported previously,we explore the feasibility of applying a high-order aeroassisted vehicle dynamic model to plan the optimal flight trajectory such that the gap between the simulated model and the real system can be narrowed.A highly-constrained optimal control model containing six-degree-of-freedom vehicle dynamics is established.To solve the formulated high-order trajectory planning model,a pipelined optimization strategy is illustrated.This approach is based on the variable order Radau pseudospectral method,indicating that the mesh grid used for discretizing the continuous system experiences several adaption iterations.Utilization of such a strategy can potentially smooth the flight trajectory and improve the algorithm convergence ability.Numerical simulations are reported to demonstrate some key features of the optimized flight trajectory.A number of comparative studies are also provided to verify the effectiveness of the applied method as well as the high-order trajectory planning model.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.