It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling alg...It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.展开更多
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi...Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.展开更多
To solve computationally expensive problems, multiple processor SoCs (MPSoCs) are frequently used. Mapping of applications to MPSoC architectures and scheduling of tasks are key problems in system level design of embe...To solve computationally expensive problems, multiple processor SoCs (MPSoCs) are frequently used. Mapping of applications to MPSoC architectures and scheduling of tasks are key problems in system level design of embedded systems. In this paper, a cluster slack optimization algorithm is described, in which the tasks in a cluster are simultaneously mapped and scheduled for heterogeneous MPSoC architectures. In our approach, the tasks are iteratively clustered and each cluster is optimized by using the branch and bound technique to capitalize on slack distribution. The proposed static task mapping and scheduling method is applied to pipelined data stream processing as well as for batch processing. In pipelined processing, the tradeoff between throughput and memory cost can be exploited by adjusting a weighting parameter. Furthermore, an energy-aware task mapping and scheduling algorithm based on our cluster slack optimization is developed. Experimental results show improvement in latency, throughput and energy.展开更多
Instruction Set Simulator (ISS) is a highly abstracted and executable model of micro architecture. It is widely used in the fields of verification and debugging during the development of microprocessors. However, wi...Instruction Set Simulator (ISS) is a highly abstracted and executable model of micro architecture. It is widely used in the fields of verification and debugging during the development of microprocessors. However, with the emergence of Chip Multi-Processors, the single-core ISS cannot meet the needs of microprocessor development. In this paper, we introduce our multi-core chip architecture first, after that a general methodology to expand a single-core ISS to a multi- core ISS (MCISS) is proposed. On this basis, a real-time comparison environment is created for multi-core verification, and the problems of multi-core communication and synchronization are addressed gracefully. With the "save and restore" mechanism, the verification procedure and the debugging are speeding up greatly.展开更多
Since softswitch is the kernel of the Next Generation Network (NGN), it is practically significant to improve the availability of the softswitch system. This paper expatiates upon the methods of realizing the high-a...Since softswitch is the kernel of the Next Generation Network (NGN), it is practically significant to improve the availability of the softswitch system. This paper expatiates upon the methods of realizing the high-availability of softswitch system. It gives the methods from a multi-level viewpoint : software-level high-availability design, platformlevel high-availability of softswitch kernel components, network-level high-availability. Additonally, it gives certain analysis on obtaining network high-availability.展开更多
A hybrid decomposition method for molecular dynamics simulations was presented, using simul- taneously spatial decomposition and force decomposition to fit the architecture of a cluster of symmetric multi-processo...A hybrid decomposition method for molecular dynamics simulations was presented, using simul- taneously spatial decomposition and force decomposition to fit the architecture of a cluster of symmetric multi-processor (SMP) nodes. The method distributes particles between nodes based on the spatial decom- position strategy to reduce inter-node communication costs. The method also partitions particle pairs within each node using the force decomposition strategy to improve the load balance for each node. Simulation results for a nucleation process with 4 000 000 particles show that the hybrid method achieves better paral- lel performance than either spatial or force decomposition alone, especially when applied to a large scale particle system with non-uniform spatial density.展开更多
A unilied vector sorting algorithm (VSA) is proposed, which sorts N arbitrary num-bers with clog. N-bits on an SIMD multi-processor system (SMMP) with processors and a composite interconnected network in time, where c...A unilied vector sorting algorithm (VSA) is proposed, which sorts N arbitrary num-bers with clog. N-bits on an SIMD multi-processor system (SMMP) with processors and a composite interconnected network in time, where c is an arbitrary positive constant. When is an arbitrary small posi-tive constant and u = log2 N, it is an O(logN) algorithm and when it is an optimal algorithm,pT = O(N log N)); where u = 1, c = 1 and e = 0.5 (a constant).展开更多
基金the National Natural Science Foundation of China(Nos.11371003 and 11461006)the Special Fund for Scientific and Technological Bases and Talents of Guangxi(No.2016AD05050)+3 种基金the Special Fund for Bagui Scholars of Guangxithe Major Tendering Project of the National Social Science Foundation(No.17ZDA160)the Sichuan Science and Technology Project(No.19YYJC0038)the Fundamental Research Funds for the Central Universities,SWUN(No.2019NYB20)
文摘It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.
基金the National"973"Basic Research Programof China (2004CB318202)
文摘Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.
文摘To solve computationally expensive problems, multiple processor SoCs (MPSoCs) are frequently used. Mapping of applications to MPSoC architectures and scheduling of tasks are key problems in system level design of embedded systems. In this paper, a cluster slack optimization algorithm is described, in which the tasks in a cluster are simultaneously mapped and scheduled for heterogeneous MPSoC architectures. In our approach, the tasks are iteratively clustered and each cluster is optimized by using the branch and bound technique to capitalize on slack distribution. The proposed static task mapping and scheduling method is applied to pipelined data stream processing as well as for batch processing. In pipelined processing, the tradeoff between throughput and memory cost can be exploited by adjusting a weighting parameter. Furthermore, an energy-aware task mapping and scheduling algorithm based on our cluster slack optimization is developed. Experimental results show improvement in latency, throughput and energy.
文摘Instruction Set Simulator (ISS) is a highly abstracted and executable model of micro architecture. It is widely used in the fields of verification and debugging during the development of microprocessors. However, with the emergence of Chip Multi-Processors, the single-core ISS cannot meet the needs of microprocessor development. In this paper, we introduce our multi-core chip architecture first, after that a general methodology to expand a single-core ISS to a multi- core ISS (MCISS) is proposed. On this basis, a real-time comparison environment is created for multi-core verification, and the problems of multi-core communication and synchronization are addressed gracefully. With the "save and restore" mechanism, the verification procedure and the debugging are speeding up greatly.
文摘Since softswitch is the kernel of the Next Generation Network (NGN), it is practically significant to improve the availability of the softswitch system. This paper expatiates upon the methods of realizing the high-availability of softswitch system. It gives the methods from a multi-level viewpoint : software-level high-availability design, platformlevel high-availability of softswitch kernel components, network-level high-availability. Additonally, it gives certain analysis on obtaining network high-availability.
基金Supported by the "985" Basic Research Foundation of Tsinghua University of China (No. JC2001024)
文摘A hybrid decomposition method for molecular dynamics simulations was presented, using simul- taneously spatial decomposition and force decomposition to fit the architecture of a cluster of symmetric multi-processor (SMP) nodes. The method distributes particles between nodes based on the spatial decom- position strategy to reduce inter-node communication costs. The method also partitions particle pairs within each node using the force decomposition strategy to improve the load balance for each node. Simulation results for a nucleation process with 4 000 000 particles show that the hybrid method achieves better paral- lel performance than either spatial or force decomposition alone, especially when applied to a large scale particle system with non-uniform spatial density.
文摘A unilied vector sorting algorithm (VSA) is proposed, which sorts N arbitrary num-bers with clog. N-bits on an SIMD multi-processor system (SMMP) with processors and a composite interconnected network in time, where c is an arbitrary positive constant. When is an arbitrary small posi-tive constant and u = log2 N, it is an O(logN) algorithm and when it is an optimal algorithm,pT = O(N log N)); where u = 1, c = 1 and e = 0.5 (a constant).