期刊文献+
共找到20,954篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
1
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver
2
作者 Yuhao Wu Dongping Xiao +1 位作者 Huaiqing Zhang Sheng Yan 《Chinese Physics B》 2025年第1期280-287,共8页
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches... The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers. 展开更多
关键词 Rydberg atom-based receiver amplitude modulation(AM) operating parameters optimization
原文传递
A novel drilling parameter optimization method based on big data of drilling
3
作者 Chi Peng Hong-Lin Zhang +3 位作者 Jian-Hong Fu Yu Su Qing-Feng Li Tian-Qi Yue 《Petroleum Science》 2025年第4期1596-1610,共15页
Rate of penetration(ROP)is the key factor affecting the drilling cycle and cost,and it directly reflects the drilling efficiency.With the increasingly complex field data,the original drilling parameter optimization me... Rate of penetration(ROP)is the key factor affecting the drilling cycle and cost,and it directly reflects the drilling efficiency.With the increasingly complex field data,the original drilling parameter optimization method can't meet the needs of drilling parameter optimization in the era of big data and artificial intelligence.This paper presents a drilling parameter optimization method based on big data of drilling,which takes machine learning algorithms as a tool.First,field data is pre-processed according to the characteristics of big data of drilling.Then a formation clustering model based on unsupervised learning is established,which takes sonic logging,gamma logging,and density logging data as input.Formation clusters with similar stratum characteristics are decided.Aiming at improving ROP,the formation clusters are input into the ROP model,and the mechanical parameters(weight on bit,revolution per minute)and hydraulic parameters(standpipe pressure,flow rate)are optimized.Taking the Southern Margin block of Xinjiang as an example,the MAPE of prediction of ROP after clustering is decreased from 18.72%to 10.56%.The results of this paper provide a new method to improve drilling efficiency based on big data of drilling. 展开更多
关键词 Rate of penetration Machine learning Drilling parameter Clustering analysis optimization
原文传递
Parameter matching and optimization of hybrid excavator swing system
4
作者 Chao SHEN Jianxin ZHU +2 位作者 Jian CHEN Saibai LI Lixin YI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第2期138-150,共13页
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul... In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems. 展开更多
关键词 Hybrid system Energy regeneration Swing braking energy parameter optimization Improved multi-objective particle swarm optimization(IMOPSO) Adaptive grid
原文传递
Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm
5
作者 Bo Yang Ruyi Zheng +2 位作者 Yucun Qian Boxiao Liang Jingbo Wang 《Global Energy Interconnection》 2025年第2期316-337,共22页
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a... Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively. 展开更多
关键词 Photovoltaic cell Bayesian neural network Artificial ecosystem optimization parameter identification
在线阅读 下载PDF
Parameter influence analysis and optimization of wheel–rail creepage characteristics in high-speed railway curves
6
作者 Bolun An Jiapeng Liu +3 位作者 Guang Yang Feng shou Liu Tong Shi Ming Zhai 《Railway Sciences》 2025年第1期37-51,共15页
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt... Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves. 展开更多
关键词 High-speed railway Curve track Wheel-rail creepage parameter analysis Response surface methodology optimization design
在线阅读 下载PDF
Optimization of Operating Parameters for Underground Gas Storage Based on Genetic Algorithm
7
作者 Yuming Luo Wei Zhang +7 位作者 Anqi Zhao Ling Gou Li Chen Yaling Yang Xiaoping Wang Shichang Liu Huiqing Qi Shilai Hu 《Energy Engineering》 2025年第8期3201-3221,共21页
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr... This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability. 展开更多
关键词 Underground gas storage operational parameter optimization extreme peak-shaving constraints genetic algorithm MODEL
在线阅读 下载PDF
Selection and Parameter Optimization of Constraint Systems for Girder-End Longitudinal Displacement Control inThree-Tower Suspension Bridges
8
作者 Zihang Wang Ying Peng +3 位作者 Xiong Lan Xiaoyu Bai Chao Deng Yuan Ren 《Structural Durability & Health Monitoring》 2025年第3期643-664,共22页
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi... To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2. 展开更多
关键词 Three-tower suspension bridge vehicle loads longitudinal constraint system viscous damper multiobjective parameter optimization
在线阅读 下载PDF
Optimization of fracturing parameters in multi-layer and multi-period cube development infill well pad:A case study on a three-layer cube development well pad of Sichuan Basin,SW China
9
作者 YANG Haixin ZHU Haiyan +5 位作者 LIU Yaowen TANG Xuanhe WANG Dajiang XIAO Jialin ZHU Danghui ZHAO Chongsheng 《Petroleum Exploration and Development》 2025年第3期817-829,共13页
The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sic... The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sichuan Basin.The fracture propagation and inter-well interference model were established based on the evolution of 4D in-situ stress,and the evolution characteristics of stress and the mechanism of interference between wells were analyzed.The research shows that the increase in horizontal stress difference and the existence of natural fractures/faults are the main reasons for inter-well interference.Inter-well interference is likely to occur near the fracture zones and between the infill wells and parent wells that have been in production for a long time.When communication channels are formed between the infill wells and parent wells,it can increase the productivity of parent wells in the short term.However,it will have a delayed negative impact on the long-term sustained production of both infill wells and parent wells.The change trend of in-situ stress caused by parent well production is basically consistent with the decline trend of pore pressure.The lateral disturbance range of in-situ stress is initially the same as the fracture length and reaches 1.5 to 1.6 times that length after 2.5 years.The key to avoiding inter-well interference is to optimize the fracturing parameters.By adopting the M-shaped well pattern,the optimal well spacing for the infill wells is 300 m,the cluster spacing is 10 m,and the liquid volume per stage is 1800 m^(3). 展开更多
关键词 shale gas cube development infill wells 4D-in-situ stress inter-well interference fracturing parameters optimization
在线阅读 下载PDF
Intelligent optimization method of fracturing parameters for shale oil reservoirs in Jimsar Sag,Junggar Basin,NW China
10
作者 WANG Yunjin ZHOU Fujian +5 位作者 SU Hang ZHENG Leyi LI Minghui YU Fuwei LI Yuan LIANG Tianbo 《Petroleum Exploration and Development》 2025年第3期830-841,共12页
For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter inte... For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter intelligent optimization technique for shale oil reservoirs and verifies it by field application.A self-governing database capable of automatic capture,storage,calls and analysis is established.With this database,22 geological and engineering variables are selected for correlation analysis.A separated fracturing effect prediction model is proposed,with the fracturing learning curve decomposed into two parts:(1)overall trend,which is predicted by the algorithm combining the convolutional neural network with the characteristics of local connection and parameter sharing and the gated recurrent unit that can solve the gradient disappearance;and(2)local fluctuation,which is predicted by integrating the adaptive boosting algorithm to dynamically adjust the random forest weight.A policy gradient-genetic-particle swarm algorithm is designed,which can adaptively adjust the inertia weights and learning factors in the iterative process,significantly improving the optimization ability of the optimization strategy.The fracturing effect prediction and optimization strategy are combined to realize the intelligent optimization of fracturing parameters.The field application verifies that the proposed technique significantly improves the fracturing effects of oil wells,and it has good practicability. 展开更多
关键词 Jimsar Sag shale oil fracturing parameter learning curve intelligent optimization reinforcement learning particle swarm algorithm
在线阅读 下载PDF
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
11
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making Multi-objective optimization(MOO) Control parameters
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
12
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Optimization of process parameters for preparation of vanadium-iron-based alloy via silicon thermal reduction
13
作者 Ning Sun Yi-min Zhang +6 位作者 Nan-nan Xue Kui-song Zhu Jun-han Li Shao-li Yang Lan Ma Xiang-li Cheng Lu Lu 《Journal of Iron and Steel Research International》 2025年第11期3722-3736,共15页
Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize pr... Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize process parameters for the preparation of V-Fe-based alloy via silicon thermal reduction.Experiments were conducted to investigate the effects of reduction temperature,holding time,and slag composition on alloy-slag separation,alloy microstructure,and the oxide content of residual slag,with an emphasis on the recovery of valuable metal elements.The results indicated that the optimal process conditions for silicon thermal reduction were achieved at reduction temperature of 1823 K,holding time of 240 min,and slag composition of 45 wt.%SiO_(2),40 wt.%CaO,and 15 wt.%Al_(2)O_(3).The resulting V-Fe-based alloy predominantly consisted of Fe-based phases such as Fe,titanium(Ti),silicon(Si)and manganese(Mn),with Si,V,as well as chromium(Cr)concentrated in the intercrystalline phase of the Fe-based alloy.The recoveries of Fe,Mn,Cr,V,and Ti under the optimal conditions were 96.30%,91.96%,86.53%,80.29%,and 74.82%,respectively.The key components of the V-Fe-based alloy obtained were 41.96 wt.%Si,27.55 wt.%Fe,12.13 wt.%Mn,5.53 wt.%V,4.86 wt.%Cr,and 3.74 wt.%Ti,thereby enabling the comprehensive recovery of the valuable metal from vanadium slag. 展开更多
关键词 Vanadium slag Silicon thermal reduction Process parameter optimization Vanadium–iron-based alloy Valuable metal element
原文传递
Back analysis of rock mass parameters in mechanized twin tunnels based on coupled auto machine learning and multi-objective optimization algorithm
14
作者 Chengwen Wang Xiaoli Liu +4 位作者 Jiubao Li Enzhi Wang Nan Hu Wenli Yao Zhihui He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7038-7055,共18页
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache... Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations. 展开更多
关键词 Back analysis of rock parameters Auto machine learning Multi-objective optimization algorithm Mechanized twin tunnels parametric modeling
在线阅读 下载PDF
Parameters Estimation of Modified Triple Diode Model of PSCs Considering Charge Accumulations and Electric Field Effects Using Puma Optimizer
15
作者 Amlak Abaza Ragab A.El-Sehiemy +1 位作者 Mona Gafar Ahmed Bayoumi 《Computer Modeling in Engineering & Sciences》 2025年第4期723-745,共23页
Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g... Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers. 展开更多
关键词 Dynamic model of PSCs puma optimizer parameter estimation triple diode model
在线阅读 下载PDF
Study on the optimal test parameters for vibration compaction based on the control of physical-mechanical indicators
16
作者 Zhongrui Chen Yanxi Xiong +3 位作者 Ronghui Yan Zhibo Cheng Taifeng Li Hongfu Tan 《Railway Sciences》 2025年第3期388-409,共22页
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ... Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction. 展开更多
关键词 High-speed railway subgrade Graded aggregates Vibratory compaction test optimal vibration compaction parameters Physical-mechanical indicator
在线阅读 下载PDF
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
17
作者 Jun Zhou Zichen Li +4 位作者 Shitao Liu Chengyu Li Yunxiang Zhao Zonghang Zhou Guangchuan Liang 《Natural Gas Industry B》 2025年第2期234-250,共17页
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject... The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS. 展开更多
关键词 Underground natural gas storage Surface injection and production pipeline parameter optimization Hybrid genetic algorithm
在线阅读 下载PDF
Chaotic Aquila Optimization Algorithm for Solving Phase Equilibrium Problems and Parameter Estimation of Semi-empirical Models 被引量:1
18
作者 Oguz Emrah Turgut Mert Sinan Turgut Erhan Kırtepe 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期486-526,共41页
This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This w... This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This work employs 25 different chaotic maps under the framework of Aquila Optimizer.It considers the ten best chaotic variants for performance evaluation on multidimensional test functions composed of unimodal and multimodal problems,which have yet to be studied in past literature works.It was found that Ikeda chaotic map enhanced Aquila Optimization algorithm yields the best predictions and becomes the leading method in most of the cases.To test the effectivity of this chaotic variant on real-world optimization problems,it is employed on two constrained engineering design problems,and its effectiveness has been verified.Finally,phase equilibrium and semi-empirical parameter estimation problems have been solved by the proposed method,and respective solutions have been compared with those obtained from state-of-art optimizers.It is observed that CH01 can successfully cope with the restrictive nonlinearities and nonconvexities of parameter estimation and phase equilibrium problems,showing the capabilities of yielding minimum prediction error values of no more than 0.05 compared to the remaining algorithms utilized in the performance benchmarking process. 展开更多
关键词 Aquila optimization algorithm Chaotic maps parameter estimation Phase equilibrium Unconstrained optimization
在线阅读 下载PDF
Analysis and Key Parameter Optimization Design of Leningrader Seal Performance
19
作者 YANG Dongya WANG Xuelin +2 位作者 WANG Feng ZHANG Hailong GAO Gui 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第2期177-192,共16页
In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface re... In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface response method was adopted to reduce the contact stress of sealing surface and von Mises stress of the sealing sleeve as the response index,with the optimization goal of reducing wear and extending life.The above three key parameters are analyzed and optimized,the influence of each parameter on the sealing performance and service life is obtained,and the best combination scheme of the three is determined.The results show that the interaction between pre-tightening force and interference fit has the greatest impact on contact stress.The interaction between interference fit and friction coeffi-cient has the most significant effect on von Mises stress.The optimized parameters can reduce the maximum contact stress and maximum von Mises stress of the sealing sleeve by 26.3%and 20.6%,respectively,under a media pressure of 5-9 MPa.Test bench verification shows that the leakage of the optimized sealing device in 12 h is reduced by 0.44 cc·min^(-1)(1 cc=1 cm^(3)).The wear rate of the sealing sleeve is 1.08%before optimization and 0.45%after optimization,indicating that the optimized parameters in this paper are effective. 展开更多
关键词 Leningrader seal Stirling engine performance analysis optimized design parameter configuration
原文传递
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
20
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic optimization Taguchi method Sludge factor Chemical composition Process parameter
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部