A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communic...A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.展开更多
instability associated Land cover change can lead to slope by accelerating erosive processes with agriculture, forestry, and infrastructure. The Rio Chiquito-Barranca del Muerto subbasin has experienced an increase in...instability associated Land cover change can lead to slope by accelerating erosive processes with agriculture, forestry, and infrastructure. The Rio Chiquito-Barranca del Muerto subbasin has experienced an increase in land cover change due to government programs and the establishment of agricultural and urban areas. The aim of this study was to provide a model to map the susceptibility to gravitational processes along sites where anthropogenic land cover change has occurred. The method was based on the stratification of the subbasin according to landforms and cartographic variables. These variables were used in a multi- criteria assessment to assign weights according to their contribution to the onset of new gravitationalprocesses. Those weights were used to create a susceptibility map based on a weighted linear sum. The accuracy of the resulting map was validated in an error matrix with a random stratified design based on susceptibility classes per landform. The results produced a map of areas with susceptibility to gravitational processes due to land cover change; this susceptibility is very high in the undifferentiated pyroclastic slope and limestone mountain, where it derives not only from anthropogenie effects on natural vegetation cover, but also from steep slopes, weathered materials, low apparent density, high erosivity, and previous gravitational processes. The results support other studies that concluded that loss of vegetation is a triggering factor in the formation of gravitational processes, but also show that excessive reforestation can increase gravitational processes.展开更多
基金Supported by National S&T Major Program of China(2013ZX03003002-003)
文摘A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.
基金PAPIIT IN102115 projectprogram Basic Science SEP-CONACYT(167495)+1 种基金CONACYT scholarship program(328294)Postgraduate Program in Geography,UNAM
文摘instability associated Land cover change can lead to slope by accelerating erosive processes with agriculture, forestry, and infrastructure. The Rio Chiquito-Barranca del Muerto subbasin has experienced an increase in land cover change due to government programs and the establishment of agricultural and urban areas. The aim of this study was to provide a model to map the susceptibility to gravitational processes along sites where anthropogenic land cover change has occurred. The method was based on the stratification of the subbasin according to landforms and cartographic variables. These variables were used in a multi- criteria assessment to assign weights according to their contribution to the onset of new gravitationalprocesses. Those weights were used to create a susceptibility map based on a weighted linear sum. The accuracy of the resulting map was validated in an error matrix with a random stratified design based on susceptibility classes per landform. The results produced a map of areas with susceptibility to gravitational processes due to land cover change; this susceptibility is very high in the undifferentiated pyroclastic slope and limestone mountain, where it derives not only from anthropogenie effects on natural vegetation cover, but also from steep slopes, weathered materials, low apparent density, high erosivity, and previous gravitational processes. The results support other studies that concluded that loss of vegetation is a triggering factor in the formation of gravitational processes, but also show that excessive reforestation can increase gravitational processes.