期刊文献+
共找到13,020篇文章
< 1 2 250 >
每页显示 20 50 100
Nonlinear traveling wave vibration of rotating ferromagnetic functionally graded cylindrical shells under multi-physics fields
1
作者 Feng LIAO Yuda HU +1 位作者 Tao YANG Xiaoman LIU 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1921-1938,I0025-I0036,共30页
The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonl... The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior. 展开更多
关键词 ferromagnetic functionally graded(FG)cylindrical shell nonlinear traveling wave vibration multi-physics field approximate analytical method
在线阅读 下载PDF
Influence of different data selection criteria on internal geomagnetic field modeling 被引量:4
2
作者 HongBo Yao JuYuan Xu +3 位作者 Yi Jiang Qing Yan Liang Yin PengFei Liu 《Earth and Planetary Physics》 2025年第3期541-549,共9页
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i... Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications. 展开更多
关键词 Macao Science Satellite-1 SWARM geomagnetic field modeling data selection core field crustal field
在线阅读 下载PDF
A multisource geomagnetic field model incorporating ocean circulation-induced magnetic field 被引量:5
3
作者 HongBo Yao JuYuan Xu +2 位作者 Cong Yang ZhengYong Ren Keke Zhang 《Earth and Planetary Physics》 2025年第3期550-563,共14页
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic... The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model. 展开更多
关键词 Macao Science Satellite-1(MSS-1) geomagnetic field modeling ocean tides ocean circulation
在线阅读 下载PDF
Development and application of rock rheological constitutive model considering dynamic stress field and seepage field 被引量:2
4
作者 Yian Chen Guangming Zhao +2 位作者 Wensong Xu Shoujian Peng Jiang Xu 《International Journal of Mining Science and Technology》 2025年第3期467-482,共16页
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great... The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock. 展开更多
关键词 Generalized rheological test Seepage-stress coupling Seepage properties Dynamic stress field Rheological constitutive model
在线阅读 下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation 被引量:2
5
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun multi-physics field coupling Experimental validation PFN
在线阅读 下载PDF
Phase field modeling of the aspect ratio dependent functional properties of NiTi shape memory alloys with different grain sizes 被引量:1
6
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Sinica》 2025年第1期22-41,共20页
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size... It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors. 展开更多
关键词 Phase field modeling NITI Aspect ratio Grain size Functional property
原文传递
A 100-degree lithospheric magnetic field model constructed using MSS-1,Swarm-A,and CHAMP satellite data 被引量:1
7
作者 JiaXuan Zhang Yan Feng +3 位作者 Pan Zhang YuXuan Lin XinWu Li Ya Huang 《Earth and Planetary Physics》 2025年第3期667-676,共10页
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1... By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling. 展开更多
关键词 lithospheric magnetic field Macao Science Satellite-1(MSS-1) line leveling Magnetic field model 7(MF7) singular spectrum analysis
在线阅读 下载PDF
An alternative regularization approach for modeling the regional lithospheric magnetic field from satellite magnetic measurements by the spherical equivalent source method and its application in Africa 被引量:1
8
作者 JiangSong Gui JinSong Du +5 位作者 Pan Zhang ChangQing Yuan YuKun Li KangAn Zhao Liang Yin HouPu Li 《Earth and Planetary Physics》 2025年第3期697-710,共14页
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve... The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings. 展开更多
关键词 regional lithospheric magnetic field model spherical equivalent source method satellite magnetism AFRICA MSS-1 CSES-1
在线阅读 下载PDF
Efficient Prediction of Quasi-Phase Equilibrium in KKS Phase Field Model via Grey Wolf-Optimized Neural Network
9
作者 Changsheng Zhu Jintao Miao +2 位作者 Zihao Gao Shuo Liu Jingjie Li 《Computers, Materials & Continua》 2025年第9期4313-4340,共28页
As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,par... As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,particularly when addressing high-dimensional and complex data in multicomponent systems.To overcome these challenges,this study proposes an innovative model,LSGWO-BP,which integrates an improved Grey Wolf Optimizer(GWO)with a backpropagation neural network(BP)to enhance the accuracy and efficiency of quasi-phase equilibrium predictions within the KKS phase-field framework.Three mapping enhancement strategies were investigated–Circle-Root,Tent-Cosine,and Logistic-Sine mappings-with the Logistic mapping further improved via Sine perturbation to boost global search capability and convergence speed in large-scale,complex data scenarios.Evaluation results demonstrate that the LSGWO-BP model significantly outperforms conventional machine learning approaches in predicting quasi-phase equilibrium,achieving a 14%–28%reduction in mean absolute error(MAE).Substantial improvements were also observed in mean squared error,root mean squared error,and mean absolute percentage error,alongside a 7%–33%increase in the coefficient of determination(R2).Furthermore,the model exhibits strong potential for microstructural simulation applications.Overall,the study confirms the effectiveness of the LSGWO-BP model in materials science,especially in enhancing phase-field modeling efficiency and enabling accurate,intelligent prediction for multicomponent alloy systems,thereby offering robust support for microstructure prediction and control. 展开更多
关键词 Logistic-sine mapping LSGWO-BP model MICROSTRUCTURE quasi-phase equilibrium phase field model
在线阅读 下载PDF
Field inversion and machine learning based on the Rubber-Band Spalart-Allmaras Model
10
作者 Chenyu Wu Yufei Zhang 《Theoretical & Applied Mechanics Letters》 2025年第2期122-130,共9页
Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leve... Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows. 展开更多
关键词 Turbulence modeling field inversion Constrained-recalibration Machine learning
在线阅读 下载PDF
A cubed-sphere based method for global and regional modeling of the lithospheric magnetic field
11
作者 Liang Yin JiaXuan Zhang +3 位作者 PengFei Liu HongBo Yao Pan Zhang JinSong Du 《Earth and Planetary Physics》 2025年第3期622-634,共13页
The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized ... The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling. 展开更多
关键词 geomagnetic satellite lithospheric magnetic field cubed-sphere grid forward modeling INVERSION
在线阅读 下载PDF
STROM:A Spatial-Temporal Reduced-Order Model for Zinc Fluidized Bed Roaster Temperature Field Prediction
12
作者 Yunfeng Zhang Chunhua Yang +2 位作者 Keke Huang Tingwen Huang Weihua Gui 《Engineering》 2025年第9期112-128,共17页
With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roast... With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089. 展开更多
关键词 Fluidized bed roaster Temperature field Data assimilation Test design Reduced-order model
在线阅读 下载PDF
Evaluation of influence of detrending CSES satellite data on lithospheric magnetic field modeling
13
作者 Jie Wang YanYan Yang +2 位作者 ZhiMa Zeren JianPing Huang HengXin Lu 《Earth and Planetary Physics》 2025年第2期346-356,共11页
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive... The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly. 展开更多
关键词 lithospheric magnetic field model satellite magnetic survey DETRENDING long-wavelength magnetic anomaly CSES
在线阅读 下载PDF
Seismic and petrophysical data analysis for geological interpretation and subsurface modeling of Keva Field,onshore Niger Delta,Nigeria
14
作者 Kembou Tsobin Evans Olawale Olakunle Osinowo +4 位作者 Wasiu Odufisan Bashir AKoledoye Yusuf Odusanwo Tobechukwu Oluchukwu Ude-Akpeh Glory Yenchek Tiele 《Energy Geoscience》 2025年第2期86-99,共14页
This study integrates seismic and petrophysical data to evaluate the subsurface geology of the Keva Field,located onshore in the Niger Delta,with the objective of constructing a 3D geological model and estimating the ... This study integrates seismic and petrophysical data to evaluate the subsurface geology of the Keva Field,located onshore in the Niger Delta,with the objective of constructing a 3D geological model and estimating the recoverable hydrocarbon volumes.Seismic lines and well log data from six wells—KV-2,KV-3,KV-4,KV-5,KV-6,and KV-7—were utilized for the interpretation.The seismic profiles revealed that the KV-4 well is the only well drilled on the up-thrown side of a significant horst fault block,bounded by four major normal faults,while all the other wells penetrated the downthrown side.Petrophysical analysis identified three key reservoirs,C500,D200,and E900,which exhibit excellent reservoir quality with high net-to-gross ratios,good porosity,and high hydrocarbon saturation.The identified depositional environments are tidal-and fluvial-dominated shoreface settings,with sheet sands deposited in distributary splay systems.The C500,D200,and E900 reservoirs have Gas Initially in Place(GIIP)values of 156.37,28.44,and 27.89 BSCF,respectively,with corresponding Estimated Ultimate Recovery(EUR)values of 104.77,19.06,and 18.69 BSCF,respectively.The Stock Tank Original Oil in Place(STOOIP)values are 24.43,91.29,and 86.41 MMSTB,with EURs of 7.32,27.4,and 25.92 MMSTB,respectively.The combined GIIP is 212.72 BSCF with EUR of 142.52 BSCF,while the total STOOIP is 202.13 MMSTB with a recoverable volume of 60.64 MMSTB.The reservoirs present an average porosity of 22.62%,with gas saturation of 84.66%and oil saturation of 73%.The evaluated reservoir qualities suggest high potential for optimized hydrocarbon production. 展开更多
关键词 POROSITY PERMEABILITY Hydrocarbon saturation 3D geological modeling Keva field Niger delta
在线阅读 下载PDF
Output power prediction of stratospheric airship solar array based on surrogate model under global wind field
15
作者 Kangwen SUN Siyu LIU +3 位作者 Yixiang GAO Huafei DU Dongji CHENG Zhiyao WANG 《Chinese Journal of Aeronautics》 2025年第4期221-232,共12页
Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the s... Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields. 展开更多
关键词 Stratospheric airship Solar array Output power Surrogate model Global wind field Energy balance
原文传递
A Laboratorial Testing Scheme for 5G System:Channel Model Principle and Field Experiment Validation
16
作者 Zhang Yuxiang Zhang Jianhua +7 位作者 Kang Yanan Zhao Mengxuan Qi Pan Zhang Zhen Tang Pan Tian Lei Liu Guangyi Yao Yuan 《China Communications》 2025年第9期113-128,共16页
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ... As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations. 展开更多
关键词 channel model field experiment high-speed dynamic time-varying(HDT) multiple-cell-multiple-user-multiple-input-multiple-output(MC-MU-MIMO) testing scheme the fifth generation communication(5G)
在线阅读 下载PDF
Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding 被引量:2
17
作者 Chu Han Ping Jiang +1 位作者 Shaoning Geng Liangyuan Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期235-251,共17页
In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten po... In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten pool during laser welding of Al-Li alloy.To accurately compute mass data within both two and three-dimensional computational domains,three efficient computing methods,including central processing unit parallel computing,adaptive mesh refinement,and moving-frame algorithm,were uti-lized.Emphasis was placed on the distinctive equiaxed-to-columnar-to-equiaxed transition phenomenon that occurs during the entire solidification process of Al-Li alloy laser welding.Simulation results indi-cated that the growth distance of columnar grains that epitaxially grew from the base metal(BM)de-creased as the nucleation rate increased.As the nucleation rate increased,the morphology of the newly formed grains near the fusion boundary(FB)changed from columnar to equiaxed,and newly formed equiaxed grains changed from having high-order dendrites to no obvious dendrite structure.When the nucleation rate was sufficiently high,non-dendritic equiaxed grains could directly form near the FB,and there was nearly no epitaxial growth from the BM.Additionally,simulation results illustrated the com-petition among multiple grains with varying orientations that grow in 3D space near the FB.Finally,how equiaxed grain bands develop was elucidated.The equiaxed band not only hindered the growth of early columnar grains but also some of its grains could grow epitaxially to form new columnar grains.These predicted results were in good agreement with experimental measurements and observations. 展开更多
关键词 Laser welding Al-Li alloy Equiaxed-to-columnar-to-equiaxed transition multi-physics multi-scale model Multicomponent alloys 3D phase-field model
原文传递
Displacement field reconstruction in landslide physical modeling by using a terrain laser scanner e Part 2:Application and large strain/displacement and water effect analysis 被引量:1
18
作者 Dongzi Liu Xingcheng Gong +3 位作者 Hongping Wang Xinli Hu Wenbo Zheng Xinyu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4077-4087,共11页
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a... Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects. 展开更多
关键词 Laser scanner LANDSLIDES Physical modeling Deformation field
在线阅读 下载PDF
Exploration of the coupled lattice Boltzmann model based on a multiphase field model:A study of the solid-liquid-gas interaction mechanism in the solidification process 被引量:1
19
作者 朱昶胜 王利军 +2 位作者 高梓豪 刘硕 李广召 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期638-648,共11页
A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubb... A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth. 展开更多
关键词 multiphase field model lattice Boltzmann model(LBM) Shan-Chen multiphase flow solidification organization
原文传递
Phase field modeling of grain stability of nanocrystalline alloys by explicitly incorporating mismatch strain 被引量:1
20
作者 Min Zhou Hong-Hui Wu +5 位作者 Yuan Wu Hui Wang Xiong-Jun Liu Sui-He Jiang Xiao-Bin Zhang Zhao-Ping Lu 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3370-3382,共13页
Ab st ra ct Nanocrystalline materials exhibit unique properties due to their extremely high grain boundary(GB) density.However,this high-density characteristic induces grain coarsening at elevated temperatures,thereby... Ab st ra ct Nanocrystalline materials exhibit unique properties due to their extremely high grain boundary(GB) density.However,this high-density characteristic induces grain coarsening at elevated temperatures,thereby limiting the widespread application of nanocrystalline materials.Recent experimental observations revealed that GB segregation and second-phase pinning effectively hinder GB migration,thereby improving the stability of nanocry stalline materials.In this study,a mouified phase-field model that integrates mismatch strain,solute segregation and precipitation was developed to evaluate the influence of lattice misfit on the thermal stability of nanocrystalline alloys.The simulation results indicated that introducing a suitable mismatch strain can effectively enhance the microstructural stability of nanocrystalline alloys.By synergizing precipitation with an appropriate lattice misfit,the formation of second-phase particles in the bulk grains can be suppressed,thereby facilitating solute segregation/precipitation at the GBs.This concentrated solute segregation and precipitation at the GBs effectively hinders grain migration,thereby preventing grain coarsening.These findings provide a new perspective on the design and regulation of nanocrystalline alloys with enhanced thermal stability. 展开更多
关键词 Phase field model Mismatch strain Second-phase precipitation Grain boundary segregation Nanocrystalline alloys
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部