期刊文献+
共找到11,746篇文章
< 1 2 250 >
每页显示 20 50 100
Electrochemical machining gap prediction with multi-physics coupling model based on two-phase turbulence flow 被引量:4
1
作者 Yuanlong CHEN Xiaochao ZHOU +1 位作者 Peixuan CHEN Ziquan WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1057-1063,共7页
Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e t... Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm. 展开更多
关键词 Electrochemical machining EQUILIBRIUM Machining gap prediction multi-physics coupling Two-phase turbulent flow
原文传递
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
2
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Failure microscopic mechanism and damage constitutive model of dolomite under water-rock coupling interaction
3
作者 SUN Xiao-ming ZHANG Jing +6 位作者 SHI Fu-kun HE Lin-sen ZHANG Yong MIAO Cheng-yu DING Jia-xu MA Li-sha ZHAO Hao-ze 《Journal of Central South University》 2025年第4期1431-1446,共16页
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev... To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability. 展开更多
关键词 water-rock coupling DOLOMITE constitutive model MICROSTRUCTURE loading-unloading cycle
在线阅读 下载PDF
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
4
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex Computational modeling coupling relationships DEPRESSION Emotion and cognition
原文传递
New insights on generalized heat conduction and thermoelastic coupling models
5
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
Optimal Coupling Height of the Atmosphere and Land Surface——An Earth System Modeling Perspective
6
作者 Shaofeng LIU Xubin ZENG +6 位作者 Yongjiu DAI Hua YUAN Nan WEI Zhongwang WEI Xingjie LU Shupeng ZHANG Michael A.BRUNKE 《Advances in Atmospheric Sciences》 2025年第3期417-426,共10页
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the... In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories. 展开更多
关键词 surface flux estimate reference height land surface modeling atmosphere-land surface coupling large-eddy simulation
在线阅读 下载PDF
Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor 被引量:9
7
作者 Xiao Luo Chi Wang +4 位作者 Ze-Ren Zou Lian-Kai Cao Shuai Wang Zhao Chen Hong-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第2期40-52,共13页
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t... In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained. 展开更多
关键词 multi-physics and multi-scale coupling method User-defined functions Dynamic link library Thermal stratification Lead-cooled fast reactor
在线阅读 下载PDF
Simulation of the future evolution track of“production-living-ecological”space in a coastal city based on multimodel coupling and wetland protection scenarios
8
作者 Yitong Yin Rongjin Yang +5 位作者 Zechen Song Yuying Zhang Yanrong Lu Le Zhang Meiying Sun Xiuhong Li 《Geography and Sustainability》 2025年第3期51-63,共13页
Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con... Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis. 展开更多
关键词 Wetland protection “Production-living-ecological”space coupling model Driving mechanism Coordinated and sustainable development
在线阅读 下载PDF
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
9
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic Gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component 被引量:2
10
作者 Zhang-rong ZHAO Yiojie WU +2 位作者 Xin-jian GU Lei ZHANG Ji-feng YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第5期653-660,共8页
This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite elem... This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite element model of GMM smart component in electric, magnetic, and mechanical fields by step computation to optimize the design of GMM smart com-ponent. The proposed model is implemented by using COMSOL multi-physics V3.2a. The effects of the smart component on the deformation and the system resonance frequencies are studied. The results calculated by the model are in excellent agreement (relative errors are below 10%) with the experimental values. 展开更多
关键词 Smart component Giant magnetostrictive Finite element method (FEM) modeling Non-cylinder piston pinhole multi-physics coupling field
原文传递
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:2
11
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
在线阅读 下载PDF
COUPLING MODEL OF EXTENDED MANUFACTURING ORGANIZATION AND ITS APPLICATION 被引量:1
12
作者 郭宇 安波 廖文和 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期137-144,共8页
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti... For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective. 展开更多
关键词 networked manufacturing manufacturing organization correlation matrix coupling model
在线阅读 下载PDF
A Model Coupling Method for Shape Prediction 被引量:15
13
作者 WANG Dong-cheng LIU Hong-min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第2期22-27,共6页
The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ... The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability. 展开更多
关键词 shape prediction results coupling method model coupling method strip plastic deformation rolls elas-tic deformation
原文传递
Coupling Dynamic Model of Chatter for Cold Rolling 被引量:10
14
作者 YANG Xu TONG Chao-nan +1 位作者 YUE Guang-feng MENG Jian-ji 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第12期30-34,共5页
In order to build high accuracy integral dynamic models of cold rolling mill system, by analyzing the vibration process of cold rolling, the dynamic model of 4-h mill, including the rolling process model, the mill rol... In order to build high accuracy integral dynamic models of cold rolling mill system, by analyzing the vibration process of cold rolling, the dynamic model of 4-h mill, including the rolling process model, the mill roll stand structure model and the hydraulic servo system model is built. These three models are coupled and linearized, then the multiple input and multiple output (MIMO) linear transfer function model of single stand 4-h cold mill system is obtained. The model with the proposed data proves its validity, meanwhile the effects of different working conditions on the stability of cold rolling mill system have been discussed. Simulation resulsts show that the model accords with former models and has its own advancement. It contributes to the further study and supression of coupling vibraiton. 展开更多
关键词 cold rolling chatter dynamic modeling coupling SIMULATION
原文传递
The dynamic coupling model and its application of urbanization and eco-environment in Hexi Corridor 被引量:9
15
作者 QIAO Biao FANG Chuanglin 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期491-499,共9页
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ... This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated. 展开更多
关键词 Hexi Corridor URBANIZATION eeo-environment harmonious development dynamic coupling model
在线阅读 下载PDF
Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor 被引量:12
16
作者 Zhi-Xing Gu Qing-Xian Zhang +4 位作者 Yi Gu Liang-Quan Ge Guo-Qiang Zeng Mu-Hao Zhang Bao-Jie Nie 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期84-100,共17页
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo... To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors. 展开更多
关键词 LBE-cooled pool-type reactor Computational fluid dynamics multi-physics coupling code Safety analysis code VERIFICATION
在线阅读 下载PDF
A Numerical Study on Effects of Land-Surface Heterogeneity from' Combined Approach' on Atmospheric ProcessPart II: Coupling-Model Simulations 被引量:5
17
作者 曾新民 赵鸣 苏炳凯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期241-255,共15页
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m... Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations. 展开更多
关键词 Combined approach Land surface heterogeneity coupling model Numerical experiment
在线阅读 下载PDF
A Model of Debris Flow Forecast Based on the Water-Soil Coupling Mechanism 被引量:5
18
作者 Shaojie Zhang Hongjuan Yang +2 位作者 Fangqiang Wei Yuhong Jiang Dunlong Liu 《Journal of Earth Science》 SCIE CAS CSCD 2014年第4期757-763,共7页
Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed s... Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied. 展开更多
关键词 debris flow forecast watershed scale soil-water coupling distributed hydrological model limit equilibrium analysis Jiangjia Gulley.
原文传递
Heat-fluid-solid coupling model for gas-bearing coal seam and numerical modeling on gas drainage promotion by heat injection 被引量:6
19
作者 Ruifu Yuan Chunling Chen +1 位作者 Xiao Wei Xiaojun Li 《International Journal of Coal Science & Technology》 EI 2019年第4期564-576,共13页
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory... Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China. 展开更多
关键词 Gassy COAL Heat-fluid-solid coupling model Heat injection GAS extraction Numerical modeling
在线阅读 下载PDF
FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION 被引量:4
20
作者 薛强 梁冰 +1 位作者 刘晓丽 李宏艳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第12期1475-1485,共11页
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami... The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory. 展开更多
关键词 contaminant transport unsaturated zone numerical model fluid-solid coupling interaction asymptotical solution
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部