期刊文献+
共找到1,514篇文章
< 1 2 76 >
每页显示 20 50 100
基于改进Vision Transformer的水稻叶片病害图像识别
1
作者 朱周华 周怡纳 +1 位作者 侯智杰 田成源 《电子测量技术》 北大核心 2025年第10期153-160,共8页
水稻叶片病害智能识别在现代农业生产中具有重要意义。针对传统Vision Transformer网络缺乏归纳偏置,难以有效捕捉图像局部细节特征的问题,提出了一种改进的Vision Transformer模型。该模型通过引入内在归纳偏置,增强了对多尺度上下文... 水稻叶片病害智能识别在现代农业生产中具有重要意义。针对传统Vision Transformer网络缺乏归纳偏置,难以有效捕捉图像局部细节特征的问题,提出了一种改进的Vision Transformer模型。该模型通过引入内在归纳偏置,增强了对多尺度上下文以及局部与全局依赖关系的建模能力,同时降低了对大规模数据集的需求。此外,Vision Transformer中的多层感知器模块被Kolmogorov-Arnold网络结构取代,从而提升了模型对复杂特征的提取能力和可解释性。实验结果表明,所提模型在水稻叶片病害识别任务中取得了优异的性能,识别准确率达到了98.62%,较原始ViT模型提升了6.2%,显著提高了对水稻叶片病害的识别性能。 展开更多
关键词 水稻叶片病害 图像识别 vision transformer网络 归纳偏置 局部特征
原文传递
Vision Transformer模型在中医舌诊图像分类中的应用研究
2
作者 周坚和 王彩雄 +3 位作者 李炜 周晓玲 张丹璇 吴玉峰 《广西科技大学学报》 2025年第5期89-98,共10页
舌诊作为中医望诊中的一项重要且常规的检查手段,在中医临床诊断中发挥着不可或缺的作用。为突破传统舌诊依赖主观经验及卷积神经网络(convolutional neural network,CNN)模型分类性能不足的局限,本文基于高质量舌象分类数据集,提出基于... 舌诊作为中医望诊中的一项重要且常规的检查手段,在中医临床诊断中发挥着不可或缺的作用。为突破传统舌诊依赖主观经验及卷积神经网络(convolutional neural network,CNN)模型分类性能不足的局限,本文基于高质量舌象分类数据集,提出基于Vision Transformer(ViT)深度学习模型,通过预训练与微调策略优化特征提取能力,并结合数据增强技术解决类别分布不平衡问题。实验结果表明,该模型在6项关键舌象特征分类任务中,5项指标的准确率(苔色85.6%、瘀斑98.0%、质地99.6%、舌色96.6%、裂纹87.8%)显著优于现有CNN方法(如ResNet50对应准确率分别为78.0%、91.0%、92.0%、68.0%、80.1%),验证了该模型在突破传统性能瓶颈、提升中医临床智能诊断可靠性方面的有效性和应用潜力。 展开更多
关键词 舌诊 vision transformer(ViT) 深度学习 医学图像分类
在线阅读 下载PDF
Vision Transformer深度学习模型在前列腺癌识别中的价值
3
作者 李梦娟 金龙 +2 位作者 尹胜男 计一丁 丁宁 《中国医学计算机成像杂志》 北大核心 2025年第3期396-401,共6页
目的:旨在探讨Vision Transformer(ViT)深度学习模型在前列腺癌(PCa)识别中的应用价值.方法:回顾性分析了480例接受磁共振成像(MRI)检查的患者影像资料.采用TotalSegmentator模型自动分割前列腺区域,通过ViT深度学习方法分别构建基于T2... 目的:旨在探讨Vision Transformer(ViT)深度学习模型在前列腺癌(PCa)识别中的应用价值.方法:回顾性分析了480例接受磁共振成像(MRI)检查的患者影像资料.采用TotalSegmentator模型自动分割前列腺区域,通过ViT深度学习方法分别构建基于T2加权像(T2WI)、基于表观弥散系数(ADC)图和基于两者结合的三个ViT模型.结果:在PCa的识别能力上,结合模型在训练组和测试组上的受试者工作特征(ROC)曲线下面积(AUC)分别为0.961和0.980,优于仅基于单一成像序列构建的ViT模型.在基于单一序列构建的ViT模型中,基于ADC图的模型相较于基于T2WI的模型表现更佳.此外,决策曲线分析显示结合模型提供了更大的临床效益.结论:ViT深度学习模型在前列腺癌识别中具有较高的诊断准确性和潜在价值. 展开更多
关键词 vision transformer 深度学习 前列腺癌 自动分割 磁共振成像
暂未订购
基于改进Vision Transformer的遥感图像分类研究 被引量:1
4
作者 李宗轩 冷欣 +1 位作者 章磊 陈佳凯 《林业机械与木工设备》 2025年第6期31-35,共5页
通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法... 通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法有效捕获关键特征,并且Vision Transformer在将图像分割为patch过程中可能会导致边缘等细节信息的丢失,从而影响分类准确性。针对上述问题提出一种改进Vision Transformer,引入了STA(Super Token Attention)注意力机制来增强Vision Transformer对关键特征信息的提取并减少计算冗余度,还通过加入哈尔小波下采样(Haar Wavelet Downsampling)在减少细节信息丢失的同时增强对图像不同尺度局部和全局信息的捕获能力。通过实验在AID数据集上达到了92.98%的总体准确率,证明了提出方法的有效性。 展开更多
关键词 遥感图像分类 vision transformer 哈尔小波下采样 STA注意力机制
在线阅读 下载PDF
A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model 被引量:2
5
作者 Shorouq Alshawabkeh Li Wu +2 位作者 Daojun Dong Yao Cheng Liping Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期561-577,共17页
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni... Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods. 展开更多
关键词 Pavement crack segmentation TRANSPORTATION deep learning vision transformer Mask R-CNN image segmentation
在线阅读 下载PDF
基于Vision Transformer的混合型晶圆图缺陷模式识别
6
作者 李攀 娄莉 《现代信息科技》 2025年第19期26-30,共5页
晶圆测试作为芯片生产过程中重要的一环,晶圆图缺陷模式的识别和分类对改进前端制造工艺具有关键作用。在实际生产过程中,各类缺陷可能同时出现,形成混合缺陷类型。传统深度学习方法对混合型晶圆图缺陷信息的识别率较低,为此,文章提出... 晶圆测试作为芯片生产过程中重要的一环,晶圆图缺陷模式的识别和分类对改进前端制造工艺具有关键作用。在实际生产过程中,各类缺陷可能同时出现,形成混合缺陷类型。传统深度学习方法对混合型晶圆图缺陷信息的识别率较低,为此,文章提出一种基于Vision Transformer的缺陷识别方法。该方法采用多头自注意力机制对晶圆图的全局特征进行编码,实现了对混合型晶圆缺陷图的高效识别。在混合型缺陷数据集上的实验结果表明,该方法性能优于现有深度学习模型,平均正确率达96.2%。 展开更多
关键词 计算机视觉 晶圆图 缺陷识别 vision transformer
在线阅读 下载PDF
层级特征融合Transformer的图像分类算法
7
作者 段士玺 王博 《电子科技》 2026年第2期72-78,共7页
针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级... 针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级的特征图,每个特征图包含不同层次的抽象特征表示。基于层级标签将ViT提取的特征映射为多级特征,运用层级特征融合策略整合不同层级信息,有效增强模型的分类性能。在CIFRA-10、CIFRA-100和CUB-200-2011这3个数据集将所提模型与多种先进深度学习模型进行对比和分析。在CIFRA-10数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为99.70%、98.80%和97.80%。在CIFRA-100数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为95.23%、93.54%和90.12%。在CUB-200-2011数据集,所提方法在第1层级和第2层级的分类精度分别为98.09%和93.66%。结果表明,所提模型的分类准确率优于其他对比模型。 展开更多
关键词 深度学习 卷积神经网络 transformer 图像分类 层级特征 特征融合 多头注意力 vision transformer
在线阅读 下载PDF
融合SOLOv2-Vision Transformer的面瘫识别方法研究
8
作者 庄哲笼 丁有伟 +2 位作者 胡孔法 陈科宏 陈功 《南京中医药大学学报》 北大核心 2025年第10期1399-1406,共8页
目的为了使患者和医生更快诊断病情,达到早发现、早诊断、早治疗的目的,建立准确及时的面瘫智能化辅助诊断方法。方法提出融合SOLOv2-Vision Transformer的方法,将收集的面瘫数据经过替换主干网络的SOLOv2模型分割,去除图像中干扰部分,... 目的为了使患者和医生更快诊断病情,达到早发现、早诊断、早治疗的目的,建立准确及时的面瘫智能化辅助诊断方法。方法提出融合SOLOv2-Vision Transformer的方法,将收集的面瘫数据经过替换主干网络的SOLOv2模型分割,去除图像中干扰部分,再输入到Vision Transformer模型中进行分类训练。通过先分割再分类的原则,提高面瘫图像的分类效果。结果该实验方法在MEEI面瘫数据集上的准确率为0.982、召回率为0.982、F1-score为0.981,相比于基础模型分别提高了2%、4%、4%。结论融合SOLOv2-Vision Transformer的面瘫分类模型,相比较于未经分割的方法可实现更高的识别精度,为面瘫诊断提供了新方法。 展开更多
关键词 图像分割 图像分类 注意力机制 面瘫 诊断 SOLOv2-vision transformer
暂未订购
基于改进的Vision Transformer深度哈希图像检索 被引量:1
9
作者 杨梦雅 赵琰 薛亮 《陕西科技大学学报》 北大核心 2025年第4期183-191,共9页
针对基于卷积神经网络的深度哈希方法不能很好捕捉全局图像信息和数据集中难易样本、正负样本对不平衡的问题,提出一种基于改进的Vision Transformer深度哈希算法(CMTH).首先,在Transformer编码网络前利用卷积神经网络提取深度局部特征... 针对基于卷积神经网络的深度哈希方法不能很好捕捉全局图像信息和数据集中难易样本、正负样本对不平衡的问题,提出一种基于改进的Vision Transformer深度哈希算法(CMTH).首先,在Transformer编码网络前利用卷积神经网络提取深度局部特征,降低维度并保持较高的图像分辨率.其次,改进的Vision Transformer网络使用轻量级多头互注意模块,提取高维深度全局特征的同时降低计算复杂度.最后,提出新的损失框架,设计标准焦点损失调整难样本在数据集中的权重,并构建一种新的哈希损失,以减少难易样本不平衡和正负样本对不平衡的影响.在CIFAR-10和NUS-WIDE上与基于Vision Transformer的深度哈希次优算法相比,在四种不同比特下均值平均精度分别平均提高了2.35%和3.75%. 展开更多
关键词 深度哈希 卷积神经网络 视觉注意力 图像检索
在线阅读 下载PDF
基于改进Vision Transformer的森林火灾视频识别研究
10
作者 张敏 辛颖 黄天棋 《南京林业大学学报(自然科学版)》 北大核心 2025年第4期186-194,共9页
【目的】针对现有森林火灾图像识别算法存在的效率不足、时序特征利用率低等问题,构建基于视频数据的森林火灾识别模型,以提升林火监测的实时性与识别准确率。【方法】提出融合三维卷积神经网络(3DCNN)与视觉Vision Transformer(ViT)的C... 【目的】针对现有森林火灾图像识别算法存在的效率不足、时序特征利用率低等问题,构建基于视频数据的森林火灾识别模型,以提升林火监测的实时性与识别准确率。【方法】提出融合三维卷积神经网络(3DCNN)与视觉Vision Transformer(ViT)的C3D-ViT算法。该模型通过3DCNN提取视频序列的时空特征,构建时空特征向量;利用ViT编码器的自注意力机制融合局部与全局特征;最终经MLP Head层输出分类结果。通过消融实验验证C3D-ViT模型的有效性,并与原模型3DCNN和ViT,以及ResNet50、LSTM、YOLOv5等深度学习模型进行对比。【结果】C3D-ViT在自建林火数据集上准确率达到96.10%,较ResNet50(89.07%)、LSTM(93.26%)和YOLOv5(91.46%)具有明显优势。模型改进有效,准确率超越3DCNN(93.91%)与ViT(90.43%)。在遮挡、远距离、低浓度烟雾等复杂场景下保持较高的平均置信度,满足实时监测需求。【结论】C3D-ViT通过时空特征联合建模,显著提升林火识别的鲁棒性与时效性,为森林防火系统提供可靠的技术支持。 展开更多
关键词 森林火灾 深度学习 目标检测 三维卷积神经网络 vision transformer
原文传递
融合Vision Transformer与3D CNN的深度伪造视频篡改检测
11
作者 孙立信 吴永飞 +2 位作者 李心宇 任杰煌 刘西林 《计算机应用与软件》 北大核心 2025年第11期121-127,共7页
Deepfake技术的出现,使人们可以轻松地对人脸视频进行篡改,对社会造成巨大的危害。现有的篡改检测方法主要侧重于视频帧间的局部人脸区域空间特征变化检测,并没有考虑连续全局区域的时域特征,且不能检测视频帧中的细微空域特征变化。针... Deepfake技术的出现,使人们可以轻松地对人脸视频进行篡改,对社会造成巨大的危害。现有的篡改检测方法主要侧重于视频帧间的局部人脸区域空间特征变化检测,并没有考虑连续全局区域的时域特征,且不能检测视频帧中的细微空域特征变化。针对此问题,提出融合Vision Transformer和3D CNN的视频篡改检测方法ViT-3DCNN。该方法无需对人脸进行裁剪,直接学习视频帧间的连续时域特征以及每一帧的空间特征。实验结果表明,不依赖于人脸剪裁的情况下,ViT-3DCNN模型分别在DFDC数据集及Celeb-DF数据集上取得了93.3%与90.65%的分类准确性,充分验证了该模型在检测精度和泛化性等方面相较于现有检测方法具有明显的优势。 展开更多
关键词 伪造视频篡改检测 时空特征 vision transformer 3D卷积
在线阅读 下载PDF
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
12
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory vision transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
ViT-Count:面向冠层遮挡的Vision Transformer树木计数定位方法
13
作者 张乔一 张瑞 霍光煜 《北京林业大学学报》 北大核心 2025年第10期128-138,共11页
【目的】针对复杂场景中树木检测的挑战,如遮挡、背景干扰及密集分布等,本研究提出一种基于Vision Transformer(ViT)的树木检测方法(ViT-Count),提升模型对复杂场景中树木的检测精度与鲁棒性。【方法】采用ViT作为基础模型,其在捕捉图... 【目的】针对复杂场景中树木检测的挑战,如遮挡、背景干扰及密集分布等,本研究提出一种基于Vision Transformer(ViT)的树木检测方法(ViT-Count),提升模型对复杂场景中树木的检测精度与鲁棒性。【方法】采用ViT作为基础模型,其在捕捉图像中全局上下文信息方面具有天然优势,尤其适用于形态多变的复杂环境。设计针对树木的视觉提示调优VPT机制,其通过在特征中注入可学习提示(prompts),优化模型在林地高密度树冠、光照变化及不同树种结构下的特征提取能力,提高对不同林分类型的适应性。设计卷积模块的注意力机制模块,利用其在局部感知基础上的长距离依赖建模能力,有效强化模型对树木遮挡、重叠及形态相似目标的辨别能力,提高整体检测的鲁棒性与准确性。设计一个树木检测解码器,通过多层卷积、归一化、GELU激活与上采样操作逐步还原空间分辨率,以生成的目标密度图实现树木计数与定位。【结果】该方法在提升森林、城市场景下的树木检测鲁棒性的同时,增强了模型在多尺度树木目标上的泛化能力。在Larch Casebearer数据集和Urban Tree数据集上进行的实验显示,与其他主流模型相比,该方法的MAE和RMSE最多分别降低了2.53、3.99,表明其泛化能力更强,具有最优的树木检测性能。可视化实验结果表明,在密集森林场景和复杂城市场景中,所提模型均具有较高的树木检测准确率。消融实验的结果证明了模型主要模块的有效性。【结论】基于Vision Transformer的面向复杂场景的树木计数与定位方法能够充分发挥ViT的全局建模能力及视觉提示调优机制任务适应性,结合卷积模块的注意力机制,有效提升复杂场景树木计数与定位的精度与鲁棒性。 展开更多
关键词 目标识别 树木计数 树木定位 复杂场景 vision transformer(ViT) 视觉提示调优(VPT) 注意力机制
在线阅读 下载PDF
基于改进Vision Transformer的局部光照一致性估计 被引量:1
14
作者 王杨 宋世佳 +3 位作者 王鹤琴 袁振羽 赵立军 吴其林 《计算机工程》 北大核心 2025年第2期312-321,共10页
光照一致性是增强现实(AR)系统中实现虚实有机融合的关键因素之一。由于拍摄视角的局限性和场景光照的复杂性,开发者在估计全景照明信息时通常忽略局部光照一致性,从而影响最终的渲染效果。为解决这一问题,提出一种基于改进视觉Transfor... 光照一致性是增强现实(AR)系统中实现虚实有机融合的关键因素之一。由于拍摄视角的局限性和场景光照的复杂性,开发者在估计全景照明信息时通常忽略局部光照一致性,从而影响最终的渲染效果。为解决这一问题,提出一种基于改进视觉Transformer(ViT)结构的局部光照一致性估计框架(ViTLight)。首先利用ViT编码器提取特征向量并计算回归球面谐波(SH)系数,进而恢复光照信息;其次改进ViT编码器结构,引入多头自注意力交互机制,采用卷积运算引导注意力头之间相互联系,在此基础上增加局部感知模块,扫描每个图像分块并对局部像素进行加权求和,捕捉区域内的特定特征,有助于平衡全局上下文特征和局部光照信息,提高光照估计的精度。在公开数据集上对比主流特征提取网络和4种经典光照估计框架,实验和分析结果表明,ViTLight在图像渲染准确率方面高于现有框架,其均方根误差(RMSE)和结构相异性(DSSIM)指标分别为0.1296和0.0426,验证了该框架的有效性与正确性。 展开更多
关键词 增强现实 光照估计 球面谐波系数 视觉transformer 多头自注意力
在线阅读 下载PDF
基于改进Vision Transformer网络的农作物病害识别方法研究
15
作者 罗兴 魏维 《黑龙江科学》 2025年第16期50-53,共4页
农作物病害对粮食生产和质量具有显著的负面影响。针对现有基于深度学习的农作物病害识别模型存在的分类精度不足和模型参数量大的问题提出一种基于Vision Transformer的新型架构,该模型采用多尺度卷积模块捕获不同尺度的特征,以扩展模... 农作物病害对粮食生产和质量具有显著的负面影响。针对现有基于深度学习的农作物病害识别模型存在的分类精度不足和模型参数量大的问题提出一种基于Vision Transformer的新型架构,该模型采用多尺度卷积模块捕获不同尺度的特征,以扩展模型的感受野,融合不同尺度特征进行卷积调制,将卷积调制与Vision Transformer相结合,构建成一个混合网络,该网络能够实现局部和全局特征的深度融合,从而显著增强特征分类能力。在Plant Village数据集上的测试结果表明,所提出的MCMT模型达到了99.5%的识别准确率,相较于传统的Vision Transformer计算量更低,识别准确率更高。 展开更多
关键词 农作物病害识别 卷积调制 特征融合 vision transformer
在线阅读 下载PDF
基于Vision Transformer的云南多民族传统绣花鞋图像识别与分类研究
16
作者 许毓 何子金 《武汉纺织大学学报》 2025年第6期27-32,共6页
传统民族服饰智能识别在民族服饰研究中具有重要意义。针对云南传统民族服饰分类存在效率低、主观性强、识别精度不高等问题,以云南地区绣花鞋为研究对象,通过迁移学习训练,借助Vision Transformer(ViT)模型进行绣花鞋自动分类验证。首... 传统民族服饰智能识别在民族服饰研究中具有重要意义。针对云南传统民族服饰分类存在效率低、主观性强、识别精度不高等问题,以云南地区绣花鞋为研究对象,通过迁移学习训练,借助Vision Transformer(ViT)模型进行绣花鞋自动分类验证。首先通过田野调查,采集绣花鞋数据,依据其特征对云南多民族绣花鞋进行民族与地域的主观分类;然后选取30种代表性绣花鞋形制作为样本,通过对实验环境、模型参数的设置,进行图像预处理,最后进行模型预训练,实现绣花鞋的自动识别与分类。实验结果表明,ViT模型的分类准确率达91.10%,能够有效识别云南民族绣花鞋的民族及地域归属。该技术为绣花鞋的规范化应用提供了客观依据,可以辅助解决绣花鞋“乱穿错搭”的问题,同时对民族文化保护与旅游产业的健康发展具有重要实践价值。 展开更多
关键词 传统绣花鞋 图像识别与分类 注意力机制 vision transformer
在线阅读 下载PDF
A Wavelet Transform and Spatial Positional Enhanced Method for Vision Transformer
17
作者 HU Runyu TANG Xuesong HAO Kuangrong 《Journal of Donghua University(English Edition)》 2025年第3期330-338,共9页
In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the ... In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage. 展开更多
关键词 transformer wavelet transform image classification computer vision
在线阅读 下载PDF
Automated Concrete Bridge Damage Detection Using an Efficient Vision Transformer-Enhanced Anchor-Free YOLO
18
作者 Xiaofei Yang Enrique del Rey Castillo +3 位作者 Yang Zou Liam Wotherspoon Jianxi Yang Hao Li 《Engineering》 2025年第8期311-326,共16页
Deep learning techniques have recently been the most popular method for automatically detecting bridge damage captured by unmanned aerial vehicles(UAVs).However,their wider application to real-world scenarios is hinde... Deep learning techniques have recently been the most popular method for automatically detecting bridge damage captured by unmanned aerial vehicles(UAVs).However,their wider application to real-world scenarios is hindered by three challenges:①defect scale variance,motion blur,and strong illumination significantly affect the accuracy and reliability of damage detectors;②existing commonly used anchor-based damage detectors struggle to effectively generalize to harsh real-world scenarios;and③convolutional neural networks(CNNs)lack the capability to model long-range dependencies across the entire image.This paper presents an efficient Vision Transformer-enhanced anchor-free YOLO(you only look once)method to address these challenges.First,a concrete bridge damage dataset was established,augmented by motion blur and varying brightness.Four key enhancements were then applied to an anchor-based YOLO method:①Four detection heads were introduced to alleviate the multi-scale damage detection issue;②decoupled heads were employed to address the conflict between classification and bounding box regression tasks inherent in the original coupled head design;③an anchor-free mechanism was incorporated to reduce the computational complexity and improve generalization to real-world scenarios;and④a novel Vision Transformer block,C3MaxViT,was added to enable CNNs to model long-range dependencies.These enhancements were integrated into an advanced anchor-based YOLOv5l algorithm,and the proposed Vision Transformer-enhanced anchor-free YOLO method was then compared against cutting-edge damage detection methods.The experimental results demonstrated the effectiveness of the proposed method,with an increase of 8.1%in mean average precision at intersection over union threshold of 0.5(mAP_(50))and an improvement of 8.4%in mAP@[0.5:.05:.95]respectively.Furthermore,extensive ablation studies revealed that the four detection heads,decoupled head design,anchor-free mechanism,and C3MaxViT contributed improvements of 2.4%,1.2%,2.6%,and 1.9%in mAP50,respectively. 展开更多
关键词 Computer vision Deep learning techniques vision transformer Object detection Bridge visual inspection
在线阅读 下载PDF
Enhanced Plant Species Identification through Metadata Fusion and Vision Transformer Integration
19
作者 Hassan Javed Labiba Gillani Fahad +2 位作者 Syed Fahad Tahir Mehdi Hassan Hani Alquhayz 《Computers, Materials & Continua》 2025年第11期3981-3996,共16页
Accurate plant species classification is essential for many applications,such as biodiversity conservation,ecological research,and sustainable agricultural practices.Traditional morphological classification methods ar... Accurate plant species classification is essential for many applications,such as biodiversity conservation,ecological research,and sustainable agricultural practices.Traditional morphological classification methods are inherently slow,labour-intensive,and prone to inaccuracies,especiallywhen distinguishing between species exhibiting visual similarities or high intra-species variability.To address these limitations and to overcome the constraints of imageonly approaches,we introduce a novel Artificial Intelligence-driven framework.This approach integrates robust Vision Transformer(ViT)models for advanced visual analysis with a multi-modal data fusion strategy,incorporating contextual metadata such as precise environmental conditions,geographic location,and phenological traits.This combination of visual and ecological cues significantly enhances classification accuracy and robustness,proving especially vital in complex,heterogeneous real-world environments.The proposedmodel achieves an impressive 97.27%of test accuracy,andMean Reciprocal Rank(MRR)of 0.9842 that demonstrates strong generalization capabilities.Furthermore,efficient utilization of high-performance GPU resources(RTX 3090,18 GB memory)ensures scalable processing of highdimensional data.Comparative analysis consistently confirms that ourmetadata fusion approach substantially improves classification performance,particularly formorphologically similar species,and through principled self-supervised and transfer learning from ImageNet,the model adapts efficiently to new species,ensuring enhanced generalization.This comprehensive approach holds profound practical implications for precise conservation initiatives,rigorous ecological monitoring,and advanced agricultural management. 展开更多
关键词 vision transformers(ViTs) transformerS machine learning deep learning plant species classification MULTI-ORGAN
在线阅读 下载PDF
Mango Disease Detection Using Fused Vision Transformer with ConvNeXt Architecture
20
作者 Faten S.Alamri Tariq Sadad +2 位作者 Ahmed S.Almasoud Raja Atif Aurangzeb Amjad Khan 《Computers, Materials & Continua》 2025年第4期1023-1039,共17页
Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at... Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial losses.The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture.This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)architectures.Two datasets were used.The first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery mildew.The second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and Rot.Both datasets were obtained from publicly available sources.The proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS dataset.The results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more efficiently.The system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual diagnostics.Additionally,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly. 展开更多
关键词 ConvNeXt model FUSION mango disease smart agriculture vision transformer
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部