Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(...In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.展开更多
The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly re...The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.展开更多
This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independ...This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independent samples drawn from the populations are taken to be of the same size. The best population is defined as the one associated with the largest threshold parameter. In case more than one population share the largest threshold, one of these is tagged at random and denoted the best. Two procedures are developed for choosing a subset of the populations having the property that the chosen subset contains the best population with a prescribed probability. One procedure is based on the sample minimum values drawn from the populations, and another is based on the sample means from the populations. An “Indifference Zone” (IZ) selection procedure is also developed based on the sample minimum values. The IZ procedure asserts that the population with the largest test statistic (e.g., the sample minimum) is the best population. With this approach, the sample size is chosen so as to guarantee that the probability of a correct selection is no less than a prescribed probability in the parameter region where the largest threshold is at least a prescribed amount larger than the remaining thresholds. Numerical examples are given, and the computer R-codes for all calculations are given in the Appendices.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this stud...Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this study,we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations.The association analysis of 16 basal mtDNA haplogroups with body mass index,waist circumference,and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort,verified by the analysis of a single population,i.e.,the Zhengzhou population.Furthermore,subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk,and the variation T12811C(causing Y159H in ND5)harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function.Specifically,we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers,indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints.We also find that nuclear variants,especially in DACT2 and PIEZO1,may functionally interact with M7b1a1.展开更多
Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with mult...Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.展开更多
The cloud data centres evolved with an issue of energy management due to the constant increase in size,complexity and enormous consumption of energy.Energy management is a challenging issue that is critical in cloud d...The cloud data centres evolved with an issue of energy management due to the constant increase in size,complexity and enormous consumption of energy.Energy management is a challenging issue that is critical in cloud data centres and an important concern of research for many researchers.In this paper,we proposed a cuckoo search(CS)-based optimisation technique for the virtual machine(VM)selection and a novel placement algorithm considering the different constraints.The energy consumption model and the simulation model have been implemented for the efficient selection of VM.The proposed model CSOA-VM not only lessens the violations at the service level agreement(SLA)level but also minimises the VM migrations.The proposed model also saves energy and the performance analysis shows that energy consumption obtained is 1.35 kWh,SLA violation is 9.2 and VM migration is about 268.Thus,there is an improvement in energy consumption of about 1.8%and a 2.1%improvement(reduction)in violations of SLA in comparison to existing techniques.展开更多
This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—cove...This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—covering momentum,volatility,volume,and trend-related technical indicators—are subjected to three distinct feature selection approaches.Specifically,mutual information(MI),recursive feature elimination(RFE),and random forest importance(RFI).By extracting an optimal set of 20 predictors,the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability.These feature subsets are integrated into support vector regression(SVR),Huber regressors,and k-nearest neighbors(KNN)models to forecast the prices of three leading cryptocurrencies—Bitcoin(BTC/USDT),Ethereum(ETH/USDT),and Binance Coin(BNB/USDT)—across horizons ranging from 1 to 20 days.Model evaluation employs the coefficient of determination(R2)and the root mean squared logarithmic error(RMSLE),alongside a walk-forward validation scheme to approximate real-world trading contexts.Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive accuracy,with particularly pronounced effects observed at longer forecast windows.Moreover,indicators related to volume and trend provide incremental benefits in select market conditions.Notably,an 80%–85% reduction in the original feature set frequently maintains or enhances model performance relative to the complete indicator set.These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data challenges while preserving model robustness.This research advances the field of cryptocurrency forecasting by offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction horizons.The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and resilient forecasting algorithms.Future efforts should incorporate high-frequency data and explore alternative selection techniques to further refine predictive accuracy in this highly volatile domain.展开更多
Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The ...Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.展开更多
Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimat...Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimation is key to effective strategies.Based on the decomposition form of the covariance matrix.This paper introduces semi-variance for improved financial asymmetric risk measurement;addresses asymmetry in financial asset correlations using distance,asymmetric,and Chatterjee correlations to refine covariance matrices;and proposes three new covariance matrix models to enhance risk assessment and portfolio selection strategies.Testing with data from 30 stocks across various sectors of the Chinese market confirms the strong performance of the proposed strategies.展开更多
In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and ...In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and machine learning(ML)-based detection systems struggle to detect phishing websites owing to their constantly changing tactics.Furthermore,newer phishing websites exhibit subtle and expertly concealed indicators that are not readily detectable.Hence,effective detection depends on identifying the most critical features.Traditional feature selection(FS)methods often struggle to enhance ML model performance and instead decrease it.To combat these issues,we propose an innovative method using explainable AI(XAI)to enhance FS in ML models and improve the identification of phishing websites.Specifically,we employ SHapley Additive exPlanations(SHAP)for global perspective and aggregated local interpretable model-agnostic explanations(LIME)to deter-mine specific localized patterns.The proposed SHAP and LIME-aggregated FS(SLA-FS)framework pinpoints the most informative features,enabling more precise,swift,and adaptable phishing detection.Applying this approach to an up-to-date web phishing dataset,we evaluate the performance of three ML models before and after FS to assess their effectiveness.Our findings reveal that random forest(RF),with an accuracy of 97.41%and XGBoost(XGB)at 97.21%significantly benefit from the SLA-FS framework,while k-nearest neighbors lags.Our framework increases the accuracy of RF and XGB by 0.65%and 0.41%,respectively,outperforming traditional filter or wrapper methods and any prior methods evaluated on this dataset,showcasing its potential.展开更多
This study investigates the pharmacokinetics and metabolic characteristics of three marinederived piericidins as potential drug leads for kidney disease:piericidin A(PA)and its two glycosides(GPAs),glucopiericidin A(G...This study investigates the pharmacokinetics and metabolic characteristics of three marinederived piericidins as potential drug leads for kidney disease:piericidin A(PA)and its two glycosides(GPAs),glucopiericidin A(GPA)and 13-hydroxyglucopiericidin A(13-OH-GPA).The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate.Rapid absorption of PA and GPAs in mice was observed,characterized by short half-lives and low bioavailability.Glycosides and hydroxyl groups significantly enhanced the absorption rate(13-OH-GPA>GPA>PA).PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes(CYPs)and uridine diphosphoglucuronosyl transferases(UGTs).Glucuronidation emerged as the primary metabolic pathway,with UGT1A7,UGT1A8,UGT1A9,and UGT1A10 demonstrating high elimination rates(30%-70%)for PA and GPAs.This rapid glucuronidation may contribute to the low bioavailability of GPAs.Despite its low bioavailability(2.69%),13-OH-GPA showed higher kidney distribution(19.8%)compared to PA(10.0%)and GPA(7.3%),suggesting enhanced biological efficacy in kidney diseases.Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability.In conclusion,this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.展开更多
Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on ...Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on CatBoost feature selection and Stacking ensemble learning.First,the method uses a feature selection algorithm to filter important features and remove features with less impact,achieving the effect of data dimensionality reduction.Second,random forests classifier,decision trees,K-nearest neighbor classifier,and light gradient boosting machine were used as base classifiers,and support vector machine was used as meta classifier to fuse and construct the ensemble learning model.This measure increases the accuracy of the classification model while maintaining the diversity of the base classifiers.The experimental results show that the recognition accuracy of the proposed method reaches 94.375%.Compared to the random forest algorithm with the best performance among single classifiers,the accuracy of the proposed method is increased by 1.875%.Compared to the recent deep learning methods(ResNet+GBM+Attention and MVCSNet)on ground-glass pulmonary nodule recognition,the proposed method’s performance is also better or comparative.Experiments show that the proposed model can effectively select features and make recognition on ground-glass pulmonary nodules.展开更多
In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of...In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of annotators.Tracking the training history reveals that misclassified samples often exhibit high confidence and excessive uncertainty in the early stages of training.To address this issue,we propose an uncertainty-based robust sample selection strategy,which combines confidence error with RandAugment to improve image diversity,effectively reducing overfitting caused by uncertain samples during deep learning model training.To validate the effectiveness of the proposed method,extensive experiments were conducted on FER public benchmarks.The accuracy obtained were 89.08%on RAF-DB,63.12%on AffectNet,and 88.73%on FERPlus.展开更多
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr...Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.展开更多
BACKGROUND Relieving pain is central to the early management of knee osteoarthritis,with a plethora of pharmacological agents licensed for this purpose.Intra-articular corticosteroid injections are a widely used optio...BACKGROUND Relieving pain is central to the early management of knee osteoarthritis,with a plethora of pharmacological agents licensed for this purpose.Intra-articular corticosteroid injections are a widely used option,albeit with variable efficacy.AIM To develop a machine learning(ML)model that predicts which patients will benefit from corticosteroid injections.METHODS Data from two prospective cohort studies[Osteoarthritis(OA)Initiative and Multicentre OA Study]was combined.The primary outcome was patientreported pain score following corticosteroid injection,assessed using the Western Ontario and McMaster Universities OA pain scale,with significant change defined using minimally clinically important difference and meaningful within person change.A ML algorithm was developed,utilizing linear discriminant analysis,to predict symptomatic improvement,and examine the association between pain scores and patient factors by calculating the sensitivity,specificity,positive predictive value,negative predictive value,accuracy,and F2 score.RESULTS A total of 330 patients were included,with a mean age of 63.4(SD:8.3).The mean Western Ontario and McMaster Universities OA pain score was 5.2(SD:4.1),with only 25.5%of patients achieving significant improvement in pain following corticosteroid injection.The ML model generated an accuracy of 67.8%(95%confidence interval:64.6%-70.9%),F1 score of 30.8%,and an area under the curve score of 0.60.CONCLUSION The model demonstrated feasibility to assist clinicians with decision-making in patient selection for corticosteroid injections.Further studies are required to improve the model prior to testing in clinical settings.展开更多
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
基金supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-035Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2.
文摘In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP.
基金supported by the National Natural Science Foundation of China(32160782 and 32060737).
文摘The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.
文摘This article constructs statistical selection procedures for exponential populations that may differ in only the threshold parameters. The scale parameters of the populations are assumed common and known. The independent samples drawn from the populations are taken to be of the same size. The best population is defined as the one associated with the largest threshold parameter. In case more than one population share the largest threshold, one of these is tagged at random and denoted the best. Two procedures are developed for choosing a subset of the populations having the property that the chosen subset contains the best population with a prescribed probability. One procedure is based on the sample minimum values drawn from the populations, and another is based on the sample means from the populations. An “Indifference Zone” (IZ) selection procedure is also developed based on the sample minimum values. The IZ procedure asserts that the population with the largest test statistic (e.g., the sample minimum) is the best population. With this approach, the sample size is chosen so as to guarantee that the probability of a correct selection is no less than a prescribed probability in the parameter region where the largest threshold is at least a prescribed amount larger than the remaining thresholds. Numerical examples are given, and the computer R-codes for all calculations are given in the Appendices.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
基金supported by the National Natural Science Foundation of China(32270670,32288101,32271186,and 32200482)the National Basic Research Program of China(2015FY111700)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-066).
文摘Mitochondria play a key role in lipid metabolism,and mitochondrial DNA(mtDNA)mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function.In this study,we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations.The association analysis of 16 basal mtDNA haplogroups with body mass index,waist circumference,and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort,verified by the analysis of a single population,i.e.,the Zhengzhou population.Furthermore,subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk,and the variation T12811C(causing Y159H in ND5)harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function.Specifically,we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers,indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints.We also find that nuclear variants,especially in DACT2 and PIEZO1,may functionally interact with M7b1a1.
文摘Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.
文摘The cloud data centres evolved with an issue of energy management due to the constant increase in size,complexity and enormous consumption of energy.Energy management is a challenging issue that is critical in cloud data centres and an important concern of research for many researchers.In this paper,we proposed a cuckoo search(CS)-based optimisation technique for the virtual machine(VM)selection and a novel placement algorithm considering the different constraints.The energy consumption model and the simulation model have been implemented for the efficient selection of VM.The proposed model CSOA-VM not only lessens the violations at the service level agreement(SLA)level but also minimises the VM migrations.The proposed model also saves energy and the performance analysis shows that energy consumption obtained is 1.35 kWh,SLA violation is 9.2 and VM migration is about 268.Thus,there is an improvement in energy consumption of about 1.8%and a 2.1%improvement(reduction)in violations of SLA in comparison to existing techniques.
文摘This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—covering momentum,volatility,volume,and trend-related technical indicators—are subjected to three distinct feature selection approaches.Specifically,mutual information(MI),recursive feature elimination(RFE),and random forest importance(RFI).By extracting an optimal set of 20 predictors,the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability.These feature subsets are integrated into support vector regression(SVR),Huber regressors,and k-nearest neighbors(KNN)models to forecast the prices of three leading cryptocurrencies—Bitcoin(BTC/USDT),Ethereum(ETH/USDT),and Binance Coin(BNB/USDT)—across horizons ranging from 1 to 20 days.Model evaluation employs the coefficient of determination(R2)and the root mean squared logarithmic error(RMSLE),alongside a walk-forward validation scheme to approximate real-world trading contexts.Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive accuracy,with particularly pronounced effects observed at longer forecast windows.Moreover,indicators related to volume and trend provide incremental benefits in select market conditions.Notably,an 80%–85% reduction in the original feature set frequently maintains or enhances model performance relative to the complete indicator set.These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data challenges while preserving model robustness.This research advances the field of cryptocurrency forecasting by offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction horizons.The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and resilient forecasting algorithms.Future efforts should incorporate high-frequency data and explore alternative selection techniques to further refine predictive accuracy in this highly volatile domain.
基金supported by the Anhui Provincial Department of Education University Research Project(2024AH051375)Research Project of Chizhou University(CZ2022ZRZ06)+1 种基金Anhui Province Natural Science Research Project of Colleges and Universities(2024AH051368)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.
基金National Natural Science Foundation of China(Project No.:12201579)。
文摘Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimation is key to effective strategies.Based on the decomposition form of the covariance matrix.This paper introduces semi-variance for improved financial asymmetric risk measurement;addresses asymmetry in financial asset correlations using distance,asymmetric,and Chatterjee correlations to refine covariance matrices;and proposes three new covariance matrix models to enhance risk assessment and portfolio selection strategies.Testing with data from 30 stocks across various sectors of the Chinese market confirms the strong performance of the proposed strategies.
文摘In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and machine learning(ML)-based detection systems struggle to detect phishing websites owing to their constantly changing tactics.Furthermore,newer phishing websites exhibit subtle and expertly concealed indicators that are not readily detectable.Hence,effective detection depends on identifying the most critical features.Traditional feature selection(FS)methods often struggle to enhance ML model performance and instead decrease it.To combat these issues,we propose an innovative method using explainable AI(XAI)to enhance FS in ML models and improve the identification of phishing websites.Specifically,we employ SHapley Additive exPlanations(SHAP)for global perspective and aggregated local interpretable model-agnostic explanations(LIME)to deter-mine specific localized patterns.The proposed SHAP and LIME-aggregated FS(SLA-FS)framework pinpoints the most informative features,enabling more precise,swift,and adaptable phishing detection.Applying this approach to an up-to-date web phishing dataset,we evaluate the performance of three ML models before and after FS to assess their effectiveness.Our findings reveal that random forest(RF),with an accuracy of 97.41%and XGBoost(XGB)at 97.21%significantly benefit from the SLA-FS framework,while k-nearest neighbors lags.Our framework increases the accuracy of RF and XGB by 0.65%and 0.41%,respectively,outperforming traditional filter or wrapper methods and any prior methods evaluated on this dataset,showcasing its potential.
基金supported by the Special Project for Marine Economic Development of Department of Natural Resources of Guangdong Province(No.GDNRC[2024]25)National Natural Science Foundation of China(Nos.82274002,U20A20101)+1 种基金Guangdong Local Innovation Team Program(No.2019BT02Y262)Science and Technology Innovation Project of Guangdong Medical Products Administration(Nos.S2021ZDZ042,2023ZDZ06,2024-ZDZ08,2024A1515012477)。
文摘This study investigates the pharmacokinetics and metabolic characteristics of three marinederived piericidins as potential drug leads for kidney disease:piericidin A(PA)and its two glycosides(GPAs),glucopiericidin A(GPA)and 13-hydroxyglucopiericidin A(13-OH-GPA).The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate.Rapid absorption of PA and GPAs in mice was observed,characterized by short half-lives and low bioavailability.Glycosides and hydroxyl groups significantly enhanced the absorption rate(13-OH-GPA>GPA>PA).PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes(CYPs)and uridine diphosphoglucuronosyl transferases(UGTs).Glucuronidation emerged as the primary metabolic pathway,with UGT1A7,UGT1A8,UGT1A9,and UGT1A10 demonstrating high elimination rates(30%-70%)for PA and GPAs.This rapid glucuronidation may contribute to the low bioavailability of GPAs.Despite its low bioavailability(2.69%),13-OH-GPA showed higher kidney distribution(19.8%)compared to PA(10.0%)and GPA(7.3%),suggesting enhanced biological efficacy in kidney diseases.Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability.In conclusion,this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.
基金the National Natural Science Foundation of China(No.62271466)the Natural Science Foundation of Beijing(No.4202025)+1 种基金the Tianjin IoT Technology Enterprise Key Laboratory Research Project(No.VTJ-OT20230209-2)the Guizhou Provincial Sci-Tech Project(No.ZK[2022]-012)。
文摘Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on CatBoost feature selection and Stacking ensemble learning.First,the method uses a feature selection algorithm to filter important features and remove features with less impact,achieving the effect of data dimensionality reduction.Second,random forests classifier,decision trees,K-nearest neighbor classifier,and light gradient boosting machine were used as base classifiers,and support vector machine was used as meta classifier to fuse and construct the ensemble learning model.This measure increases the accuracy of the classification model while maintaining the diversity of the base classifiers.The experimental results show that the recognition accuracy of the proposed method reaches 94.375%.Compared to the random forest algorithm with the best performance among single classifiers,the accuracy of the proposed method is increased by 1.875%.Compared to the recent deep learning methods(ResNet+GBM+Attention and MVCSNet)on ground-glass pulmonary nodule recognition,the proposed method’s performance is also better or comparative.Experiments show that the proposed model can effectively select features and make recognition on ground-glass pulmonary nodules.
文摘In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of annotators.Tracking the training history reveals that misclassified samples often exhibit high confidence and excessive uncertainty in the early stages of training.To address this issue,we propose an uncertainty-based robust sample selection strategy,which combines confidence error with RandAugment to improve image diversity,effectively reducing overfitting caused by uncertain samples during deep learning model training.To validate the effectiveness of the proposed method,extensive experiments were conducted on FER public benchmarks.The accuracy obtained were 89.08%on RAF-DB,63.12%on AffectNet,and 88.73%on FERPlus.
文摘Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.
基金Supported by National Institute For Health and Care Research,No.NIHR302632.
文摘BACKGROUND Relieving pain is central to the early management of knee osteoarthritis,with a plethora of pharmacological agents licensed for this purpose.Intra-articular corticosteroid injections are a widely used option,albeit with variable efficacy.AIM To develop a machine learning(ML)model that predicts which patients will benefit from corticosteroid injections.METHODS Data from two prospective cohort studies[Osteoarthritis(OA)Initiative and Multicentre OA Study]was combined.The primary outcome was patientreported pain score following corticosteroid injection,assessed using the Western Ontario and McMaster Universities OA pain scale,with significant change defined using minimally clinically important difference and meaningful within person change.A ML algorithm was developed,utilizing linear discriminant analysis,to predict symptomatic improvement,and examine the association between pain scores and patient factors by calculating the sensitivity,specificity,positive predictive value,negative predictive value,accuracy,and F2 score.RESULTS A total of 330 patients were included,with a mean age of 63.4(SD:8.3).The mean Western Ontario and McMaster Universities OA pain score was 5.2(SD:4.1),with only 25.5%of patients achieving significant improvement in pain following corticosteroid injection.The ML model generated an accuracy of 67.8%(95%confidence interval:64.6%-70.9%),F1 score of 30.8%,and an area under the curve score of 0.60.CONCLUSION The model demonstrated feasibility to assist clinicians with decision-making in patient selection for corticosteroid injections.Further studies are required to improve the model prior to testing in clinical settings.