期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于深度特征强化与路径聚合优化的目标检测
1
作者 王晓峰 黄俊俊 +1 位作者 谭文雅 沈紫璇 《计算机科学》 北大核心 2025年第11期184-195,共12页
在深度网络的前馈过程中,输入数据的特征信息会被抽象和压缩,导致部分对于目标检测关键的特征信息被弱化。基于YOLOv11n,提出了深度特征强化与路径聚合优化的目标检测方法。首先,设计全局-局部特征增强模块GLFEM(Global-Local Feature E... 在深度网络的前馈过程中,输入数据的特征信息会被抽象和压缩,导致部分对于目标检测关键的特征信息被弱化。基于YOLOv11n,提出了深度特征强化与路径聚合优化的目标检测方法。首先,设计全局-局部特征增强模块GLFEM(Global-Local Feature Enhancement Module),结合特征图局部特征与全局特征,强化深层网络特征的表达能力。然后,设计自适应特征增强模块AFEM(Adaptive Feature Enhancement Module),根据特征的可靠性动态增强深层网络的特征提取能力。最后,对路径聚合特征金字塔网络进行优化,融合了不同层次之间的特征信息,减少了层次之间的语义信息差。在VisDrone,NWPU VHR-10和TinyPerson这3个公共数据集上的实验结果表明,该方法的平均检测精度相较于当前先进的目标检测器均有所提升。在自建数据集AirportTiny上进行实验,该方法同样取得了不错的效果,具有良好的泛化能力。 展开更多
关键词 目标检测 深层网络 路径聚合 特征信息 特征强化
在线阅读 下载PDF
基于多路径增强特征的早期烟雾检测算法 被引量:1
2
作者 司盼召 何丽 +1 位作者 王宏伟 冉腾 《电子测量技术》 北大核心 2025年第7期142-151,共10页
早期烟雾检测是及时消除火灾隐患的有效手段,然而火灾早期的烟雾尺度小且扩散形式复杂,这使得其检测极具挑战性。针对以上问题,提出了一种基于多路径增强特征的早期烟雾检测算法MEF-YOLO。该算法采用QA-ELAN改进了骨干网络,实现了模型... 早期烟雾检测是及时消除火灾隐患的有效手段,然而火灾早期的烟雾尺度小且扩散形式复杂,这使得其检测极具挑战性。针对以上问题,提出了一种基于多路径增强特征的早期烟雾检测算法MEF-YOLO。该算法采用QA-ELAN改进了骨干网络,实现了模型复杂度和精度兼顾优化;并设计了FGCA自主增强样本区域间的特征差异,以有效捕捉烟雾的空间信息;且通过MEFAN优化特征融合路径,实现了跨层次特征间的直接交互,有效缓解了细节信息损失;又引入Wise-IOU损失函数,通过权重调整机制全面考虑位置和尺度信息,进而提高其在复杂场景的鲁棒性。实验结果表明,在不同光照以及小尺度烟雾、烟雾扩散等实验场景中,本研究提出的算法对早期烟雾的检测准确率高达92.5%,并且更具轻量化优势,参数量和GFLOPs分别下降了27.5%和30.6%。 展开更多
关键词 早期烟雾 YOLOv5 多路径增强特征聚合网络 注意力机制
原文传递
结合目标特征增强与语义-位置路径聚合的水下目标检测
3
作者 宋巍 倪舟 +2 位作者 梁纪辰 张明华 王建 《计算机工程与应用》 北大核心 2025年第15期93-110,共18页
针对水下图像质量差、目标多尺度和严重遮挡导致的漏检和误检等问题,提出一种结合目标信息增强与语义-位置路径聚合的水下目标检测模型。该模型以RT-DETR框架为基础,提出了边缘特征多尺度注入模块(multiscale injection for edge featur... 针对水下图像质量差、目标多尺度和严重遮挡导致的漏检和误检等问题,提出一种结合目标信息增强与语义-位置路径聚合的水下目标检测模型。该模型以RT-DETR框架为基础,提出了边缘特征多尺度注入模块(multiscale injection for edge features module,MSI-Edge),将边缘信息注入深层网络中,强化了模型对小目标的感知能力;同时,提出了全局-局部特征增强模块(global-local feature enhancement module,GLF-Enhance)来替代编码器中的传统多头自注意力机制,增强对目标全局和局部信息的学习能力,并加速模型推理;进而,设计了一种新的结合语义-位置路径聚合网络(semantic-location path aggregation network,SL-PAN),利用高层特征作为权重来指导低层特征中的语义信息学习,再使用低层特征作为权重来指导高层特征中的位置信息学习,从而有效缓解多尺度特征融合过程中信息传递退化的问题。在公开水下数据集上进行实验验证,相较基准模型RT-DETR(ResNet50主干网络),在URPC数据集上AP、AP^(50)、AP^(75)指标分别提升了约3.2、3.0和2.7个百分点;在DUO数据集上分别提升了2.9、2.7、3.0个百分点,同时有效降低了误检和漏检率。消融实验验证了各模块的有效性。整体性能与主流目标检测器及最新水下目标检测器相比,达到了较好水平。 展开更多
关键词 水下目标检测 语义-位置路径聚合网络 边缘特征多尺度注入 RT-DETR模型 全局-局部特征增强
在线阅读 下载PDF
用于苹果质量检测的长短程特征增强金字塔网络
4
作者 张学锋 陈鑫 +1 位作者 张少杰 张锦华 《计算机技术与发展》 2025年第6期198-206,共9页
由于果实和树叶间存在的遮挡、重叠,以及复杂的采摘环境制约了苹果果实信息的完整采集,给目标的精确检测带来了严峻挑战。特征金字塔作为调节网络中信息流动的关键组件,其性能的优劣直接影响特征的表达能力。传统的特征金字塔在特征传... 由于果实和树叶间存在的遮挡、重叠,以及复杂的采摘环境制约了苹果果实信息的完整采集,给目标的精确检测带来了严峻挑战。特征金字塔作为调节网络中信息流动的关键组件,其性能的优劣直接影响特征的表达能力。传统的特征金字塔在特征传播过程中存在信息易丢失以及特征利用不足的问题,从而造成目标检测网络检测效率低下。为了解决这一问题,该文提出了一种长短程特征增强金字塔网络(LSFE-FPN)用来高效聚合特征并促进特征复用。首先,通过长、短路径聚合连接增强层间的信息交互,高效聚合全局和局部特征信息,解决了传播路径中信息易丢失的问题。其次,根据通道和层级依赖性,利用关键特征增强模块(KFE)对关键特征重新加权,确保所有特征都能得到有效利用。在建立的苹果质量检测数据集上,以YOLOv8和RT-DERT作为测试网络的验证实验结果表明,相较于PaNet,LSFE-FPN使YOLOv8s的参数量减少了32%,而mAP0.5提高了4.1百分点;在RT-DERT目标检测网络中,LSFE-FPN相较于其他特征金字塔网络,也展现出了更高的检测精度。此外,在VisDrone和VOC2012等多个公共数据集上的实验结果也进一步证明了LSFE-FPN的有效性和泛化能力。 展开更多
关键词 特征金字塔网络 长短路径聚合连接 关键特征增强 苹果质量检测 深度学习
在线阅读 下载PDF
基于细化聚合多频特征的图像超分辨率研究
5
作者 吴大荣 胡仕刚 《湖南工业大学学报》 2025年第6期37-43,共7页
基于Transformer的方法在提取全局上下文方面表现优异,且在单图像超分辨率(SISR)方面拥有显著效果,但因其主要功能是捕获全局特征,这使得它更注重于捕获低频信息,从而忽略了对于高频特征的提取。为解决这一问题,提出了一种集成卷积和Tra... 基于Transformer的方法在提取全局上下文方面表现优异,且在单图像超分辨率(SISR)方面拥有显著效果,但因其主要功能是捕获全局特征,这使得它更注重于捕获低频信息,从而忽略了对于高频特征的提取。为解决这一问题,提出了一种集成卷积和Transformer结构优势的多频特征聚合网络(MFAN)。该网络由3个重要模块组成:用于提取全局上下文的耦合自注意Transformer(CSAT)、用于提取并增强高频信息的高频增强模块(HFEM),以及用于细化全局特征的细化融合模块(RFM)。通过实验得知,与其他SR方法相比,所提出的MFAN显著提高了分辨的视觉效果和图像质量。 展开更多
关键词 超分辨率 耦合自注意力机制 高频增强 细化融合模块 多频特征聚合网络(MFAN)
在线阅读 下载PDF
改进YOLO11的高精度课堂行为检测算法
6
作者 曹燚 曹倩 +1 位作者 钱承山 袁程胜 《计算机科学与探索》 北大核心 2025年第8期2135-2148,共14页
针对课堂场景中学生目标小、分布密集且易被遮挡,导致检测精度低、识别效果不佳的问题,提出了一种基于YOLO11改进的课堂行为检测算法MFD-YOLO。该算法通过一系列创新设计,显著提升了课堂行为检测的精度和识别效果。设计了多维度特征流... 针对课堂场景中学生目标小、分布密集且易被遮挡,导致检测精度低、识别效果不佳的问题,提出了一种基于YOLO11改进的课堂行为检测算法MFD-YOLO。该算法通过一系列创新设计,显著提升了课堂行为检测的精度和识别效果。设计了多维度特征流动网络(MFFN),通过结合维度感知选择性融合模块和多维特征扩散机制,增强了小目标的特征表示能力,显著提高了检测精度。在主干网络中构建了特征增强聚合模块(FEAM),通过整合不同尺度感受野的信息来优化特征提取过程,增强了网络对多尺度特征的增强与聚合能力,从而提高了对密集学生群体的检测能力。将传统检测头改进为动态检测头(DyHead),通过增强多尺度感知能力,有效提升了对被遮挡学生的识别能力,减少了误检和漏检现象。实验结果表明,与基础模型YOLO11n相比,MFD-YOLO在POCO数据集上的mAP0.50和mAP0.50:0.95分别提高了4.2和6.0个百分点,显著提升了检测精度,并有效降低了误检和漏检率;在SCB-Dataset3数据集上,mAP0.50和mAP0.50:0.95分别提高了3.4和4.4个百分点,进一步验证了改进算法的适用性和鲁棒性,证明了其在课堂行为检测中的应用潜力。 展开更多
关键词 课堂行为检测 高精度 YOLO11 多维度特征流动网络(MFFN) 特征增强聚合模块(FEAM)
在线阅读 下载PDF
基于多色域特征与物理模型的水下图像增强
7
作者 张瑞航 林森 《智能系统学报》 北大核心 2025年第2期475-485,共11页
水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提... 水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提供的信息帮助图像颜色恢复。其次,为获取到更真实的视觉效果,对白平衡算法进行推广,并将深度学习算法与水下光学成像模型结合,以数据驱动的方式求解清晰图像。最后,提出多色域轮换模式对网络进行训练,在不同色域空间中搜索最优解。实验证明,该方法在色彩平衡、细节恢复方面效果显著,相比经典算法与前沿算法更具优势,在特征点匹配与显著性检验任务中满足水下智能机器人视觉系统对图像清晰度的要求。 展开更多
关键词 水下图像增强 成像模型 深度学习 多色域空间 特征聚合 轮换训练 算法推广 卷积神经网络
在线阅读 下载PDF
改进YOLOv8s的无人机航拍图像目标检测算法
8
作者 马跑 文志诚 王佳 《计算机工程与设计》 北大核心 2025年第10期2795-2802,共8页
针对无人机航拍图像检测精度不足与小目标漏检问题,本文提出一种基于YOLOv8s的增强型检测算法。结合空间分组增强注意力机制设计C2f_SGE,优化语义特征的空间分布,并引入SPD-Conv提取多尺度特征。颈部设计RGEGELAN模块强化跨层特征融合... 针对无人机航拍图像检测精度不足与小目标漏检问题,本文提出一种基于YOLOv8s的增强型检测算法。结合空间分组增强注意力机制设计C2f_SGE,优化语义特征的空间分布,并引入SPD-Conv提取多尺度特征。颈部设计RGEGELAN模块强化跨层特征融合。增加高分辨率检测头以增强小目标检测性能。最后,采用Shape-IoU优化边框回归。实验结果表明,改进算法在VisDrone2021数据集上相比于YOLOv8s算法P、R、mAP@0.5分别提升了6.5%、7.7%、9.1%,参数量减少32%,优于SSD和YOLO系列等主流算法,验证了改进算法的优越性。 展开更多
关键词 无人机航拍图像 小目标 深度学习 损失函数 注意力机制 特征增强 通用高效层聚合网络
在线阅读 下载PDF
结合注意引导网络的弱光图像增强算法 被引量:1
9
作者 黄磊 黄文准 《佳木斯大学学报(自然科学版)》 CAS 2024年第1期16-20,共5页
弱光图像增强具有挑战性,不仅需要考虑亮度恢复,还需要考虑色彩失真和噪声等复杂问题。简单地调整弱光图像的亮度将不可避免的放大这些伪影。为了解决这些难题,一种带有注意引导分支的端到端弱光增强网络(attention guided low light en... 弱光图像增强具有挑战性,不仅需要考虑亮度恢复,还需要考虑色彩失真和噪声等复杂问题。简单地调整弱光图像的亮度将不可避免的放大这些伪影。为了解决这些难题,一种带有注意引导分支的端到端弱光增强网络(attention guided low light enhancement network,AGNet)被提出。AGNet由注意引导网络和弱光增强网络两部分组成。注意引导网络被用来学习弱光图像中的照度-注意映射,并将其应用于弱光增强网络,以指导图像亮度增强和去噪任务。弱光增强网络由多尺度卷积和残差块构成,通过特征金字塔结构从多个尺度来提取弱光图像中的细节和纹理特征。此外,网络中还引入了多尺度色彩矫正模块(multi-scale color recalibration module,MCRM),以进一步增强了输出图像的颜色和对比度。实验结果表明,AGNet在主流弱光数据集上(LOL-v1和LOL-v2-synthetic)不仅在客观指标上领先(两个数据集的PSNR提高了2.13/2.52),而且在主观比较上也具有优势。 展开更多
关键词 弱光图像 弱光图像增强网络 注意引导网络 多尺度特征聚合
在线阅读 下载PDF
基于灰度世界和门控聚合网络的水下图像增强 被引量:1
10
作者 刘真 高秀晶 洪汉池 《厦门理工学院学报》 2024年第1期67-75,共9页
针对水下机器人在非限制环境中水下作业时,获取的水下图像存在整体色调偏蓝、偏绿、边缘细节较模糊及对比度较低等问题,提出一种基于灰度世界算法和端到端门控上下文聚合网络的水下图像增强算法。该算法通过图像R、G、B等3个通道分量调... 针对水下机器人在非限制环境中水下作业时,获取的水下图像存在整体色调偏蓝、偏绿、边缘细节较模糊及对比度较低等问题,提出一种基于灰度世界算法和端到端门控上下文聚合网络的水下图像增强算法。该算法通过图像R、G、B等3个通道分量调整的灰度世界算法,获取颜色校正后的水下图像;将校正后的水下图像输入到门控上下文聚合网络中,利用门控网络来融合图像中不同层次的特征,并引入平滑空洞技术和特征注意力模块,消除空洞卷积所出现的网格伪影现象,提高通道信息的灵活性,达到图像增强的效果。最后选取1 000幅参考图像,与6种经典增强算法进行主客观评价。结果表明,该算法在主观质量上提高了图像的对比度和清晰度,修正了水下图像的色偏;在客观评价指标上,测试集A中的峰值信噪比、结构相似性、信息熵和水下图像质量评估的平均值分别达到25.176 0 dB、0.950 9、8.057 9和0.618 2,测试集B的分别达到21.576 1 dB、0.933 1、8.119 4和0.591 4,评价结果都优于6种经典增强算法。 展开更多
关键词 水下图像增强 灰度世界 颜色校正 门控上下文聚合网络 特征注意力
在线阅读 下载PDF
基于改进的一维级联神经网络的异常流量检测 被引量:3
11
作者 王婷 王其兵 +5 位作者 何志方 闫磊 李远 赵文娜 郝伟 张娅楠 《计算机应用与软件》 北大核心 2023年第9期320-326,共7页
提出一种基于改进的一维级联神经网络的异常流量检测模型(Abnormal Traffic Detection Model of Improved One-Dimensional Cascaded Neural Network, ATD-ICNN),与一般的卷积神经网络“卷积-池化-全连接”不同的是,为了充分利用不同网... 提出一种基于改进的一维级联神经网络的异常流量检测模型(Abnormal Traffic Detection Model of Improved One-Dimensional Cascaded Neural Network, ATD-ICNN),与一般的卷积神经网络“卷积-池化-全连接”不同的是,为了充分利用不同网络层输出的特征维度信息,提出一种新的密集特征聚合模块(Dense Feature Aggregation, DFA),为了更大限度地发挥DFA模块的作用,进一步提出增强特征注意力模块(Enhanced Feature Attention, EFA),最后处理得到的维度特征输入Softmax分类器用于最终流量数据分类。实验结果证明所提出的方法与随机森林(RF)方法相比,实现了较高的分类精度,精确率和召回率都提高了4百分点;与Adaboost方法相比,召回率提高了3百分点,表明该方法具有较高的流量异常检测性能。 展开更多
关键词 网络流量 异常检测 级联神经网络 密集特征聚合 增强特征注意力
在线阅读 下载PDF
聚焦小目标的航拍图像目标检测算法 被引量:20
12
作者 张智 易华挥 郑锦 《电子学报》 EI CAS CSCD 北大核心 2023年第4期944-955,共12页
与通用目标检测不同,无人机(Unmanned Aerial Vehicle,UAV)航拍图像目标检测主要面临两个难题:(1)远距离观察下存在大量小尺寸目标,难以与背景区分;(2)大量区域中目标密集且存在严重遮挡.因此,将通用目标检测器直接应用于航拍图像会导... 与通用目标检测不同,无人机(Unmanned Aerial Vehicle,UAV)航拍图像目标检测主要面临两个难题:(1)远距离观察下存在大量小尺寸目标,难以与背景区分;(2)大量区域中目标密集且存在严重遮挡.因此,将通用目标检测器直接应用于航拍图像会导致检测精度下降.本文提出一种聚焦小目标的航拍图像目标检测算法(Focusing on Small objects Detector in aerial images,FocSDet).针对小目标,通过密集高级组合(Dense Higher-Level Composition,DHLC)模式连接双Swin-Transfomer骨干网络,并和特征金字塔(Feature Pyramid Networks,FPN)结合,构建小目标特征聚合网络作为FocSDet的骨干网络,可丰富单层特征表达并提升对图像全局信息的利用,在不损失大目标语义信息的同时得到对小目标更好的特征描述,有效提升了小目标检测能力;针对区域密集遮挡,提出任务平衡样本分配策略,区别于现有样本分配策略只依赖定位位置,本文所提出的策略中样本匹配质量评价分数由定位位置信息和预测分类分数共同构成.基于该新评价分数不断迭代更新样本分配和监督网络优化,取得了更高质量的预测结果.最后,在检测头的分类和回归分支中引入层注意力构成增强检测头,进一步提升了小目标的检测性能.在Visdrone无人机数据集、CARPK航拍数据集上的实验表明,本文提出的FocSDet相较于现有方法ATSS和VFNET,在Visdrone上平均精度(Average Precision,AP)分别提升2%和0.6%,小目标APs分别提升2.6%和1.2%;在CARPK上AP分别提升2.2%和1.7%,小目标APs分别提升5.2%和5.0%. 展开更多
关键词 航拍图像 目标检测 小目标特征聚合网络 任务平衡样本分配 增强检测头
在线阅读 下载PDF
基于递进式特征增强聚合的伪装目标检测 被引量:6
13
作者 谭湘粤 胡晓 +1 位作者 杨佳信 向俊将 《计算机应用》 CSCD 北大核心 2022年第7期2192-2200,共9页
伪装目标检测(COD)旨在检测隐藏在复杂环境中的目标。现有COD算法在结合多层次特征时,忽略了特征的表达和融合方式对检测性能的影响。为此,提出一种基于递进式特征增强聚合的COD算法。首先,通过主干网络提取多级特征;然后,为了提高特征... 伪装目标检测(COD)旨在检测隐藏在复杂环境中的目标。现有COD算法在结合多层次特征时,忽略了特征的表达和融合方式对检测性能的影响。为此,提出一种基于递进式特征增强聚合的COD算法。首先,通过主干网络提取多级特征;然后,为了提高特征的表达能力,使用由特征增强模块(FEM)构成的增强网络对多层次特征进行增强;最后,在聚合网络中设计邻近聚合模块(AAM)实现相邻特征之间的信息融合,以突显伪装目标区域的特征,并提出新的递进式聚合策略(PAS)通过渐进的方式聚合邻近特征,从而在实现多层特征有效融合的同时抑制噪声。在3个公开数据集上的实验表明,所提算法相较于12种最先进的算法在4个客观评价指标上均取得最优表现,尤其是在COD10K数据集上所提算法的加权的F测评法和平均绝对误差(MAE)分别达到了0.809和0.037。由此可见,所提算法在COD任务上拥有较优的性能。 展开更多
关键词 卷积神经网络 伪装目标检测 特征增强 邻近聚合模块 递进式聚合策略
在线阅读 下载PDF
用于视频行为识别的高效二维时序建模网络 被引量:5
14
作者 栗志磊 李俊 +2 位作者 施智平 姜那 张永康 《计算机工程与应用》 CSCD 北大核心 2023年第3期127-134,共8页
二维卷积难以对视频数据进行有效的时间信息建模。针对这个问题,提出了一个高效的基于二维卷积的时间建模网络。该网络只需要RGB图像作为输入,避免了复杂的光流计算,在低计算复杂度的前提下,可以在行为识别任务中达到先进的准确性。网... 二维卷积难以对视频数据进行有效的时间信息建模。针对这个问题,提出了一个高效的基于二维卷积的时间建模网络。该网络只需要RGB图像作为输入,避免了复杂的光流计算,在低计算复杂度的前提下,可以在行为识别任务中达到先进的准确性。网络主要由两个部分组成,即运动特征增强模块和时序聚集模块。具体来说,运动特征增强模块主要实现短期时序建模,它利用当前帧与相邻帧的差异信息对当前帧中的运动信息进行自适应性的增强,让网络能够了解图像中的哪一部分将要产生运动。时序聚集模块实现长期的时序建模,主要应用于网络的后期,通过二维卷积对时序上的信息进行信息聚合,让每一帧图像经过网络提取特征后,都能够结合时序上所有帧序列的信息。在三个常见的视频动作识别数据集(UCF101、HMDB51和Something-Something V1)上进行的大量实验表明,与大多数现有方法相比,所提出的时序建模网络可以获得先进的识别性能。 展开更多
关键词 短期运动特征增强 长期时序聚集 时序建模 二维卷积网络 行为识别
在线阅读 下载PDF
基于高效聚合特征增强网络的合成孔径雷达船舰检测方法 被引量:6
15
作者 单慧琳 刘文星 +3 位作者 王兴涛 付相为 李长帅 张银胜 《光学学报》 EI CAS CSCD 北大核心 2024年第12期309-319,共11页
合成孔径雷达(SAR)由于散射效应以及波长和天线尺寸的分辨率限制,难以获取小尺寸目标的细节和边界信息,因此,检测准确性不高。为了提高SAR船舰检测的准确率以及降低误检率,提出了一种基于高效聚合特征增强网络的SAR船舰检测方法。首先,... 合成孔径雷达(SAR)由于散射效应以及波长和天线尺寸的分辨率限制,难以获取小尺寸目标的细节和边界信息,因此,检测准确性不高。为了提高SAR船舰检测的准确率以及降低误检率,提出了一种基于高效聚合特征增强网络的SAR船舰检测方法。首先,在主干网络中采用空间通道注意力机制,构建出高效层卷积块作为主要的特征提取模块,以增强模型的特征获取性能,提高模型对船舰目标的识别能力;其次,特征融合部分采用Inception NeXt模块来提高算法效率;最后,在主干网络以及特征提取部分之间构建出一种全局增强特征金字塔分支结构,进一步融合全局特征,避免传输过程中的低维度特征损失,以提升网络的特征融合能力,使其即使对于复杂背景下的小目标仍然能展现出可靠的检测能力。为了证明所提网络的有效性,在SSDD数据集上作了对比实验,实验结果表明,相较于YOLOv7,所提网络的准确率提升了2.5个百分点,召回率提升了9.2个百分点,交并比(IoU)阈值为0.5时的平均精度提升了6.4个百分点,IoU为0.5∶0.95时的平均精度提升了9.9个百分点。实验结果证明,所提网络在提升SAR船舰检测精度、改善误检漏检等方面有显著优势,可作为高精度的检测方法来有效应对SAR船舰检测中存在的问题。 展开更多
关键词 深度学习 目标检测 高效聚合特征增强网络 注意力机制 合成孔径雷达船舰检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部