With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object si...With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.展开更多
Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices.Domain adaptation(DA)is an effective method for addressing the distribution discrepancy ...Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices.Domain adaptation(DA)is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed.In this paper,we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network,named variational quantum domain adaptation(VQDA).The data are first uploaded by a‘quantum coding module',then the feature information is extracted by several‘quantum convolution layers'and‘quantum pooling layers',which is named‘Feature Extractor'.Subsequently,the labels and the domains of the samples are obtained by the‘quantum fully connected layer'.With a gradient reversal module,the trained‘Feature Extractor'can extract the features that cannot be distinguished from the source and target domains.The simulations on the local computer and IBM Quantum Experience(IBM Q)platform by Qiskit show the effectiveness of the proposed method.The results show that VQDA(with 8 quantum bits)has 91.46%average classification accuracy for DA task between MNIST→USPS(USPS→MNIST),achieves 91.16%average classification accuracy for gray-scale and color images(with 10 quantum bits),and has 69.25%average classification accuracy on the DA task for color images(also with 10 quantum bits).VQDA achieves a 9.14%improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks.Simultaneously,the parameters scale is reduced to 43%by using VQDA when both quantum and classical DA methods have similar classification accuracies.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed...The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed Denial of Service(DDoS)attacks triggered by botnets,have resulted in information leakage and property damage.Therefore,developing an efficient and realistic intrusion detection system(IDS)is critical for ensuring IoT network security.In recent years,traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic,and the excellent performance of deep learning techniques,as an advanced version of machine learning,has led to their widespread application in intrusion detection.In this paper,we propose an Adaptive Particle Swarm Optimization Convolutional Neural Network Squeeze-andExcitation(APSO-CNN-SE)model for implementing IoT network intrusion detection.A 2D CNN backbone is initially constructed to extract spatial features from network traffic.Subsequently,a squeeze-and-excitation channel attention mechanism is introduced and embedded into the CNN to focus on critical feature channels.Lastly,the weights and biases in the CNN-SE are extracted to initialize the population individuals of the APSO.As the number of iterations increases,the population’s position vector is continuously updated,and the cross-entropy loss function value is minimized to produce the ideal network architecture.We evaluated the models experimentally using binary and multiclassification on the UNSW-NB15 and NSL-KDD datasets,comparing and analyzing the evaluation metrics derived from each model.Compared to the base CNN model,the results demonstrate that APSO-CNNSE enhances the binary classification detection accuracy by 1.84%and 3.53%and the multiclassification detection accuracy by 1.56%and 2.73%on the two datasets,respectively.Additionally,the model outperforms the existing models like DT,KNN,LR,SVM,LSTM,etc.,in terms of accuracy and fitting performance.This means that the model can identify potential attacks or anomalies more precisely,improving the overall security and stability of the IoT environment.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
Cardiovascular diseases(CVDs)continue to present a leading cause ofmortalityworldwide,emphasizing the importance of early and accurate prediction.Electrocardiogram(ECG)signals,central to cardiac monitoring,have increa...Cardiovascular diseases(CVDs)continue to present a leading cause ofmortalityworldwide,emphasizing the importance of early and accurate prediction.Electrocardiogram(ECG)signals,central to cardiac monitoring,have increasingly been integratedwithDeep Learning(DL)for real-time prediction of CVDs.However,DL models are prone to performance degradation due to concept drift and to catastrophic forgetting.To address this issue,we propose a realtime CVDs prediction approach,referred to as ADWIN-GFR that combines Convolutional Neural Network(CNN)layers,for spatial feature extraction,with Gated Recurrent Units(GRU),for temporal modeling,alongside adaptive drift detection and mitigation mechanisms.The proposed approach integratesAdaptiveWindowing(ADWIN)for realtime concept drift detection,a fine-tuning strategy based on Generative Features Replay(GFR)to preserve previously acquired knowledge,and a dynamic replay buffer ensuring variance,diversity,and data distribution coverage.Extensive experiments conducted on the MIT-BIH arrhythmia dataset demonstrate that ADWIN-GFR outperforms standard fine-tuning techniques,achieving an average post-drift accuracy of 95.4%,amacro F1-score of 93.9%,and a remarkably low forgetting score of 0.9%.It also exhibits an average drift detection delay of 12 steps and achieves an adaptation gain of 17.2%.These findings underscore the potential of ADWIN-GFR for deployment in real-world cardiac monitoring systems,including wearable ECG devices and hospital-based patient monitoring platforms.展开更多
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o...To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.展开更多
Existing segmentation and augmentation techniques on convolutional neural network(CNN)has produced remarkable progress in object detection.However,the nominal accuracy and performance might be downturned with the phot...Existing segmentation and augmentation techniques on convolutional neural network(CNN)has produced remarkable progress in object detection.However,the nominal accuracy and performance might be downturned with the photometric variation of images that are directly ignored in the training process,along with the context of the individual CNN algorithm.In this paper,we investigate the effect of a photometric variation like brightness and sharpness on different CNN.We observe that random augmentation of images weakens the performance unless the augmentation combines the weak limits of photometric variation.Our approach has been justified by the experimental result obtained from the PASCAL VOC 2007 dataset,with object detection CNN algorithms such as YOLOv3(You Only Look Once),Faster R-CNN(Region-based CNN),and SSD(Single Shot Multibox Detector).Each CNN model shows performance loss for varying sharpness and brightness,ranging between−80%to 80%.It was further shown that compared to random augmentation,the augmented dataset with weak photometric changes delivered high performance,but the photometric augmentation range differs for each model.Concurrently,we discuss some research questions that benefit the direction of the study.The results prove the importance of adaptive augmentation for individual CNN model,subjecting towards the robustness of object detection.展开更多
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ...Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.展开更多
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin...Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.展开更多
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e...To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of...Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.展开更多
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de...The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
With the application of distributed power sources,the stability of the power system has been dramatically affected.Therefore,scholars have proposed the concept of a virtual synchronous generator(VSG).However,after the...With the application of distributed power sources,the stability of the power system has been dramatically affected.Therefore,scholars have proposed the concept of a virtual synchronous generator(VSG).However,after the system is disturbed,how to make it respond quickly and effectively to maintain the stability of the system becomes a complex problem.To address this problem,a frequency prediction component is incorporated into the control module of the VSG to enhance its performance.The Convolutional Neural NetworkLong Short-Term Memory(CNN-LSTM)model is used for frequency prediction,ensuring that the maximum energy capacity released by the storage system is maintained.Additionally,it guarantees that the inverter's output power does not exceed its rated capacity,based on the predicted frequency limit after the system experiences a disturbance.The advantage of real-time adjustment of inverter parameters is that the setting intervals for inertia and damping can be increased.The selection criteria for inertia and damping can be derived from the power angle oscillation curve of the synchronous generator.Consequently,an adaptive control strategy for VSG parameters is implemented to enhance the system's frequency restoration following disturbances.The validity and effectiveness of the model are verified through simulations in Matlab/Simulink.展开更多
In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limi...In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture.展开更多
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt...With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.展开更多
Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be ...Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. However, those expressions are not applicable for biased input signals. In this paper, a closed-form approximated expression is proposed for the residual ISI applicable for the noisy and biased input case. This new proposed expression is valid for blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. The new proposed expression depends on the equalizer’s tap length, input signal statistics, channel power, SNR, step-size parameter and on the input signal’s bias. Simulation results indicate a high correlation between the simulated results and those obtained from our new proposed expression.展开更多
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin...Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods.展开更多
基金funded by Zhejiang Basic Public Welfare Research Project,grant number LZY24E060001supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)+1 种基金the University of Macao(MYRG2022-00271-FST)the Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)。
文摘Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices.Domain adaptation(DA)is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed.In this paper,we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network,named variational quantum domain adaptation(VQDA).The data are first uploaded by a‘quantum coding module',then the feature information is extracted by several‘quantum convolution layers'and‘quantum pooling layers',which is named‘Feature Extractor'.Subsequently,the labels and the domains of the samples are obtained by the‘quantum fully connected layer'.With a gradient reversal module,the trained‘Feature Extractor'can extract the features that cannot be distinguished from the source and target domains.The simulations on the local computer and IBM Quantum Experience(IBM Q)platform by Qiskit show the effectiveness of the proposed method.The results show that VQDA(with 8 quantum bits)has 91.46%average classification accuracy for DA task between MNIST→USPS(USPS→MNIST),achieves 91.16%average classification accuracy for gray-scale and color images(with 10 quantum bits),and has 69.25%average classification accuracy on the DA task for color images(also with 10 quantum bits).VQDA achieves a 9.14%improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks.Simultaneously,the parameters scale is reduced to 43%by using VQDA when both quantum and classical DA methods have similar classification accuracies.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金the National Natural Science Foundation of China“Research on the Evidence Chain Construction from the Analysis of the Investigation Documents(62166006)”the Natural Science Foundation of Guizhou Province under Grant[2020]1Y254.
文摘The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed Denial of Service(DDoS)attacks triggered by botnets,have resulted in information leakage and property damage.Therefore,developing an efficient and realistic intrusion detection system(IDS)is critical for ensuring IoT network security.In recent years,traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic,and the excellent performance of deep learning techniques,as an advanced version of machine learning,has led to their widespread application in intrusion detection.In this paper,we propose an Adaptive Particle Swarm Optimization Convolutional Neural Network Squeeze-andExcitation(APSO-CNN-SE)model for implementing IoT network intrusion detection.A 2D CNN backbone is initially constructed to extract spatial features from network traffic.Subsequently,a squeeze-and-excitation channel attention mechanism is introduced and embedded into the CNN to focus on critical feature channels.Lastly,the weights and biases in the CNN-SE are extracted to initialize the population individuals of the APSO.As the number of iterations increases,the population’s position vector is continuously updated,and the cross-entropy loss function value is minimized to produce the ideal network architecture.We evaluated the models experimentally using binary and multiclassification on the UNSW-NB15 and NSL-KDD datasets,comparing and analyzing the evaluation metrics derived from each model.Compared to the base CNN model,the results demonstrate that APSO-CNNSE enhances the binary classification detection accuracy by 1.84%and 3.53%and the multiclassification detection accuracy by 1.56%and 2.73%on the two datasets,respectively.Additionally,the model outperforms the existing models like DT,KNN,LR,SVM,LSTM,etc.,in terms of accuracy and fitting performance.This means that the model can identify potential attacks or anomalies more precisely,improving the overall security and stability of the IoT environment.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R196)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Cardiovascular diseases(CVDs)continue to present a leading cause ofmortalityworldwide,emphasizing the importance of early and accurate prediction.Electrocardiogram(ECG)signals,central to cardiac monitoring,have increasingly been integratedwithDeep Learning(DL)for real-time prediction of CVDs.However,DL models are prone to performance degradation due to concept drift and to catastrophic forgetting.To address this issue,we propose a realtime CVDs prediction approach,referred to as ADWIN-GFR that combines Convolutional Neural Network(CNN)layers,for spatial feature extraction,with Gated Recurrent Units(GRU),for temporal modeling,alongside adaptive drift detection and mitigation mechanisms.The proposed approach integratesAdaptiveWindowing(ADWIN)for realtime concept drift detection,a fine-tuning strategy based on Generative Features Replay(GFR)to preserve previously acquired knowledge,and a dynamic replay buffer ensuring variance,diversity,and data distribution coverage.Extensive experiments conducted on the MIT-BIH arrhythmia dataset demonstrate that ADWIN-GFR outperforms standard fine-tuning techniques,achieving an average post-drift accuracy of 95.4%,amacro F1-score of 93.9%,and a remarkably low forgetting score of 0.9%.It also exhibits an average drift detection delay of 12 steps and achieves an adaptation gain of 17.2%.These findings underscore the potential of ADWIN-GFR for deployment in real-world cardiac monitoring systems,including wearable ECG devices and hospital-based patient monitoring platforms.
基金supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
文摘To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
文摘Existing segmentation and augmentation techniques on convolutional neural network(CNN)has produced remarkable progress in object detection.However,the nominal accuracy and performance might be downturned with the photometric variation of images that are directly ignored in the training process,along with the context of the individual CNN algorithm.In this paper,we investigate the effect of a photometric variation like brightness and sharpness on different CNN.We observe that random augmentation of images weakens the performance unless the augmentation combines the weak limits of photometric variation.Our approach has been justified by the experimental result obtained from the PASCAL VOC 2007 dataset,with object detection CNN algorithms such as YOLOv3(You Only Look Once),Faster R-CNN(Region-based CNN),and SSD(Single Shot Multibox Detector).Each CNN model shows performance loss for varying sharpness and brightness,ranging between−80%to 80%.It was further shown that compared to random augmentation,the augmented dataset with weak photometric changes delivered high performance,but the photometric augmentation range differs for each model.Concurrently,we discuss some research questions that benefit the direction of the study.The results prove the importance of adaptive augmentation for individual CNN model,subjecting towards the robustness of object detection.
基金supported by the National Natural Science Foundation of China(61975020,62171053)。
文摘Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.
基金supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)fund.
文摘Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.
文摘To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金The authors received Sichuan Science and Technology Program(No.18YYJC1917)funding for this study.
文摘Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.
基金supported by the Technology Projects of Guizhou Province under Grant[2024]003National Natural Science Foundation of China(GrantNos.62166007,62066008,62066007)Guizhou Provincial Science and Technology Projects under Grant No.ZK[2023]300.
文摘The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
文摘With the application of distributed power sources,the stability of the power system has been dramatically affected.Therefore,scholars have proposed the concept of a virtual synchronous generator(VSG).However,after the system is disturbed,how to make it respond quickly and effectively to maintain the stability of the system becomes a complex problem.To address this problem,a frequency prediction component is incorporated into the control module of the VSG to enhance its performance.The Convolutional Neural NetworkLong Short-Term Memory(CNN-LSTM)model is used for frequency prediction,ensuring that the maximum energy capacity released by the storage system is maintained.Additionally,it guarantees that the inverter's output power does not exceed its rated capacity,based on the predicted frequency limit after the system experiences a disturbance.The advantage of real-time adjustment of inverter parameters is that the setting intervals for inertia and damping can be increased.The selection criteria for inertia and damping can be derived from the power angle oscillation curve of the synchronous generator.Consequently,an adaptive control strategy for VSG parameters is implemented to enhance the system's frequency restoration following disturbances.The validity and effectiveness of the model are verified through simulations in Matlab/Simulink.
基金funded by the National Key Research and Development Program of China:Sino-Malta Fund 2022“Autonomous Biomimetic Underwater Vehicle for Digital Cage Monitoring”(Grant No.2022YFE0107100).
文摘In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture.
基金supported by the National Natural Science Foundation of China(Nos.62202247 and 62306073)the National Key Research and Development Program of China(No.2022ZD0115303).
文摘With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.
文摘Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. However, those expressions are not applicable for biased input signals. In this paper, a closed-form approximated expression is proposed for the residual ISI applicable for the noisy and biased input case. This new proposed expression is valid for blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. The new proposed expression depends on the equalizer’s tap length, input signal statistics, channel power, SNR, step-size parameter and on the input signal’s bias. Simulation results indicate a high correlation between the simulated results and those obtained from our new proposed expression.
文摘Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods.