Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).C...Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.展开更多
In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remot...In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.展开更多
The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal min...The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.展开更多
In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also c...In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.展开更多
In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above ...In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above function,are obtained.Especially,we associate the multi-parameters Mittag-Leffler function with two special functions which are the generalized Wright hypergeometric and the Fox’s-H functions.Meanwhile,some interesting integral operators and derivative operators of this function,are also discussed.展开更多
Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in...Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in time-independent Hamiltonians.Here,our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians.In particular,we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit.We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields.In addition to the estimation precision,we also evaluate the robustness of the optimization schemes against the shift of the control parameters.The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision,and exhibits superior robustness.Moreover,a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters.We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities,thereby mitigating incompatibilities between control strategies on the estimation precision.Finally,we investigate the trade-offs in estimation precision among different parameters for different scenarios,revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.展开更多
Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI present...Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.展开更多
Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter i...Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter identification model that is independent of position error by combining the dq-axis voltage equations. Then, a novel dual signal alternate injection method is proposed to address the rank-deficiency issue, i.e., during one injection period, a zero, positive, and negative d-axis current injection together with a rotor position offset injection, to simultaneously identify the multi-parameters, including stator resistance, dq-axis inductances, and PM flux linkage. The proposed method is verified by experiments at different dq-axis current conditions.展开更多
The multi-parameter monitor is an essential instrument in medical rescue. It realizes the dynamic monitoring of human life parameters. In the verification process of the measurement parameters of the multi-parameter m...The multi-parameter monitor is an essential instrument in medical rescue. It realizes the dynamic monitoring of human life parameters. In the verification process of the measurement parameters of the multi-parameter monitor, it aims at the verification of ECG, non-invasive blood pressure and other indicators. This paper discusses the necessity of the metrological verification of the multi-parameter monitor, analyzes the problems and countermeasures in the metrological verification of the multi-parameter monitor.展开更多
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in...A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.展开更多
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in...Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain i...A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain in the power transmission lines system,and a monitoring center based on client–server model is established to process and display the sensing information.Several FBG-based power transmission line temperature sensors interrogated based on the developed multi-parameter real-time monitoring scheme is experimentally investigated.The result shows that the system is very useful.展开更多
Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powe...Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.展开更多
Electric vehicle power battery consistency is the key factor affecting the performance of power batteries. it is not scientific to evaluate the consistency of the battery depending on voltage or capacity. In this pape...Electric vehicle power battery consistency is the key factor affecting the performance of power batteries. it is not scientific to evaluate the consistency of the battery depending on voltage or capacity. In this paper, multi- parameter evaluation method for battery consistency based on principal component analysis is proposed. Firstly, the characteristic parameters of battery consistency are analyzed, the principal component score can be used as the basis for evaluating the consistency of the battery. Then, the function that multi-parameter evaluation of battery consistency is established. Finally, battery balancing strategy based on fuzzy control is developed. The basic principle of fuzzy control is to fuzzy the input quantity based on expert knowledge, and the fuzzy control auantitv is obtained bv fuzzy control rule_ Th~ re.~nlt.~ ~ro v^rlfiocl hv t,~t展开更多
AIM In our previous study, we have built a nine-gene(GPC3, HGF, ANXA1, FOS, SPAG9, HSPA1 B, CXCR4, PFN1, and CALR) expression detection system based on the Ge XP system. Based on peripheral blood and Ge XP, we aimed t...AIM In our previous study, we have built a nine-gene(GPC3, HGF, ANXA1, FOS, SPAG9, HSPA1 B, CXCR4, PFN1, and CALR) expression detection system based on the Ge XP system. Based on peripheral blood and Ge XP, we aimed to analyze the results of genes expression by different multi-parameter analysis methods and build a diagnostic model to classify hepatocellular carcinoma(HCC) patients and healthy people.METHODS Logistic regression analysis, discriminant analysis, classification tree analysis, and artificial neural network were used for the multi-parameter gene expression analysis method. One hundred and three patients with early HCC and 54 age-matched healthy normal controls were used to build a diagnostic model. Fiftytwo patients with early HCC and 34 healthy people were used for validation. The area under the curve, sensitivity, and specificity were used as diagnostic indicators.RESULTS Artificial neural network of the total nine genes had the best diagnostic value, and the AUC, sensitivity, and specificity were 0.943, 98%, and 85%, respectively. At last, 52 HCC patients and 34 healthy normal controls were used for validation. The sensitivity and specificity were 96% and 86%, respectively.CONCLUSION Multi-parameter analysis methods may increase the diagnostic value compared to single factor analysis and they may be a trend of the clinical diagnosis in the future.展开更多
An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Sin...An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.展开更多
Selecting the optimal machining parameters for impeller surface is a challenging task in the automatic manufacturing industry, due to its free-form surface and deep-crooked flow channel.Existing experimental methods r...Selecting the optimal machining parameters for impeller surface is a challenging task in the automatic manufacturing industry, due to its free-form surface and deep-crooked flow channel.Existing experimental methods require lots of machining experiments and off-line tests, which may lead to high machining cost and low efficiency. This paper proposes a novel method of machining parameters optimization for an impeller based on the on-machine measuring technique. The absolute average error and standard deviation of the measured points are used to define the grey relational grade for reconstructing the objective function, and the complex problem of multi-objective optimization is simplified into a problem of single-objective optimization. Then, by comparing the values of the defined grey relational grade in a designed orthogonal experiment, the optimal combination of the machining parameters is obtained. The experiment-solving process of the objective function corresponds to the minimization of the used errors, which is advantageous to reducing the machining error. The proposed method is efficient and low-cost, since it does not require re-clamping the workpiece for off-line tests. Its effectiveness is verified by an on-machine inspection experiment of the impeller blade.展开更多
Significant temperature difference(300-77 K or even 4 K) can cause large deformations and displacements of the beam position monitors(BPMs),which affect BPMs measurement resolution or even cause their malfunction in c...Significant temperature difference(300-77 K or even 4 K) can cause large deformations and displacements of the beam position monitors(BPMs),which affect BPMs measurement resolution or even cause their malfunction in cryogenic situations.In this paper,to check the offset from the mechanical to electrical center in low temperature(77 K),Fourier's law and finite element method are used to simulate cryo-deformation.Laser tracker and micro-alignment telescope are employed in combined BPM calibration,installation and monitoring.The calibration error is<0.02 mm,and the installation and monitoring precision are 0.06 mm and 0.01 mm,respectively.The monitored cryo-deformation agrees well with the simulation results.These indicate that the combined alignment can improve performance of the BPM system.All these guaranteed the success of running the 9.55 MeV@2.14 mA cw protons.展开更多
基金the financial supports of the National Natural Science Foundation of China(No.52372200)a project supported by the State Key Laboratory of Mechanics and Control for Aerospace Structures(No.MCAS-S-0324G01)。
文摘Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.
基金supported by the International Science and Technology Cooperation Program of China(2010DFB20190)the Key Project of Earthquake Science(201008007)
文摘In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.
基金financial support from the Fundamental Research Funds for the Central Universities of China (No. 2015QNB19)the financial support from the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education of China (No. JYBSYS2015107)+2 种基金the National Natural Science Foundation of China (Nos. 51404254, 41430317 and U1261202)the China Postdoctoral Science Foundation of China (No. 2014M560465)the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No. 1302050B)
文摘The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.41661134012 and 41501012)Foundation for selected young scientists,Institute of Mountain Hazards and Environment,CAS(Grant Nos.SDSQN-1306,Y3L1340340,sds-135-1202-02)
文摘In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.
基金Supported by The National Undergraduate Innovation Training Program(Grant No.202310290069Z).
文摘In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above function,are obtained.Especially,we associate the multi-parameters Mittag-Leffler function with two special functions which are the generalized Wright hypergeometric and the Fox’s-H functions.Meanwhile,some interesting integral operators and derivative operators of this function,are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.12075323)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300702).
文摘Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in time-independent Hamiltonians.Here,our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians.In particular,we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit.We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields.In addition to the estimation precision,we also evaluate the robustness of the optimization schemes against the shift of the control parameters.The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision,and exhibits superior robustness.Moreover,a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters.We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities,thereby mitigating incompatibilities between control strategies on the estimation precision.Finally,we investigate the trade-offs in estimation precision among different parameters for different scenarios,revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001)the National Key R&D Program of China(Grant No.2019YFC0605503C)+2 种基金the Major Scientific and Technological Projects of China National Petroleum Corporation(CNPC)(Grant No.ZD2019-183-003)the National Outstanding Youth Science Foundation(Grant No.41922028)the National Innovation Group Project(Grant No.41821002).
文摘Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.
文摘Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter identification model that is independent of position error by combining the dq-axis voltage equations. Then, a novel dual signal alternate injection method is proposed to address the rank-deficiency issue, i.e., during one injection period, a zero, positive, and negative d-axis current injection together with a rotor position offset injection, to simultaneously identify the multi-parameters, including stator resistance, dq-axis inductances, and PM flux linkage. The proposed method is verified by experiments at different dq-axis current conditions.
文摘The multi-parameter monitor is an essential instrument in medical rescue. It realizes the dynamic monitoring of human life parameters. In the verification process of the measurement parameters of the multi-parameter monitor, it aims at the verification of ECG, non-invasive blood pressure and other indicators. This paper discusses the necessity of the metrological verification of the multi-parameter monitor, analyzes the problems and countermeasures in the metrological verification of the multi-parameter monitor.
基金supported by the National Natural Science Foundation of China(22074072,22274083,52376199)the Shandong Provincial Natural Science Foundation(ZR2023LZY005)+1 种基金the Exploration Project of the State Key Laboratory of BioFibers and EcoTextiles of Qingdao University(TSKT202101)the Fundamental Research Funds for the Central Universities(2022BLRD13,2023BLRD01).
文摘A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
文摘Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
文摘A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain in the power transmission lines system,and a monitoring center based on client–server model is established to process and display the sensing information.Several FBG-based power transmission line temperature sensors interrogated based on the developed multi-parameter real-time monitoring scheme is experimentally investigated.The result shows that the system is very useful.
基金provided by the State Key Research Development Program of China (No.2016YFC0801403)Key Research Development Program of Jiangsu Provence (No.BE2015040)+1 种基金National Natural Science Foundation of China (Nos.51674253,51734009 and 51604270)Natural Science Foundation of Jiangsu Province (No.BK20171191)
文摘Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.
基金the Special Research Fund for the National Key Research and Development Program of China(No.2016YFB0100107)the National Natural Science Foundation of China(No.51677183)
文摘Electric vehicle power battery consistency is the key factor affecting the performance of power batteries. it is not scientific to evaluate the consistency of the battery depending on voltage or capacity. In this paper, multi- parameter evaluation method for battery consistency based on principal component analysis is proposed. Firstly, the characteristic parameters of battery consistency are analyzed, the principal component score can be used as the basis for evaluating the consistency of the battery. Then, the function that multi-parameter evaluation of battery consistency is established. Finally, battery balancing strategy based on fuzzy control is developed. The basic principle of fuzzy control is to fuzzy the input quantity based on expert knowledge, and the fuzzy control auantitv is obtained bv fuzzy control rule_ Th~ re.~nlt.~ ~ro v^rlfiocl hv t,~t
基金National Key R&D Program of China,No.2016YFC0106604National Natural Science Foundation of China,No.81471761 and No.81501568
文摘AIM In our previous study, we have built a nine-gene(GPC3, HGF, ANXA1, FOS, SPAG9, HSPA1 B, CXCR4, PFN1, and CALR) expression detection system based on the Ge XP system. Based on peripheral blood and Ge XP, we aimed to analyze the results of genes expression by different multi-parameter analysis methods and build a diagnostic model to classify hepatocellular carcinoma(HCC) patients and healthy people.METHODS Logistic regression analysis, discriminant analysis, classification tree analysis, and artificial neural network were used for the multi-parameter gene expression analysis method. One hundred and three patients with early HCC and 54 age-matched healthy normal controls were used to build a diagnostic model. Fiftytwo patients with early HCC and 34 healthy people were used for validation. The area under the curve, sensitivity, and specificity were used as diagnostic indicators.RESULTS Artificial neural network of the total nine genes had the best diagnostic value, and the AUC, sensitivity, and specificity were 0.943, 98%, and 85%, respectively. At last, 52 HCC patients and 34 healthy normal controls were used for validation. The sensitivity and specificity were 96% and 86%, respectively.CONCLUSION Multi-parameter analysis methods may increase the diagnostic value compared to single factor analysis and they may be a trend of the clinical diagnosis in the future.
基金supported by the National Natural Science Foundation of China(6153102061471383)
文摘An algorithm of highly maneuvering target tracking is proposed to solve the problem of large tracking error caused by strong maneuver. In this algorithm, a new estimator, named as multi-parameter fusion Singer (MF-Singer) model is derived based on the Singer model and the fuzzy reasoning method by using radial acceleration and velocity of the target, and applied to the problem of maneuvering target tracking in strong maneuvering environment and operating environment. The tracking performance of the MF-Singer model is evaluated and compared with other manuevering tracking models. It is shown that the MF-Singer model outperforms these algorithms in several examples.
基金co-supported by the National Basic Research Program of China(No.2015CB057304)the National Natural Science Foundation of China(Nos.51535004 and91648111)
文摘Selecting the optimal machining parameters for impeller surface is a challenging task in the automatic manufacturing industry, due to its free-form surface and deep-crooked flow channel.Existing experimental methods require lots of machining experiments and off-line tests, which may lead to high machining cost and low efficiency. This paper proposes a novel method of machining parameters optimization for an impeller based on the on-machine measuring technique. The absolute average error and standard deviation of the measured points are used to define the grey relational grade for reconstructing the objective function, and the complex problem of multi-objective optimization is simplified into a problem of single-objective optimization. Then, by comparing the values of the defined grey relational grade in a designed orthogonal experiment, the optimal combination of the machining parameters is obtained. The experiment-solving process of the objective function corresponds to the minimization of the used errors, which is advantageous to reducing the machining error. The proposed method is efficient and low-cost, since it does not require re-clamping the workpiece for off-line tests. Its effectiveness is verified by an on-machine inspection experiment of the impeller blade.
基金supported by the National Natural Science Foundation of China(No.11605262)
文摘Significant temperature difference(300-77 K or even 4 K) can cause large deformations and displacements of the beam position monitors(BPMs),which affect BPMs measurement resolution or even cause their malfunction in cryogenic situations.In this paper,to check the offset from the mechanical to electrical center in low temperature(77 K),Fourier's law and finite element method are used to simulate cryo-deformation.Laser tracker and micro-alignment telescope are employed in combined BPM calibration,installation and monitoring.The calibration error is<0.02 mm,and the installation and monitoring precision are 0.06 mm and 0.01 mm,respectively.The monitored cryo-deformation agrees well with the simulation results.These indicate that the combined alignment can improve performance of the BPM system.All these guaranteed the success of running the 9.55 MeV@2.14 mA cw protons.